Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580
Volume 39, Issue 4
Displaying 1-9 of 9 articles from this issue
Original Papers
  • Xiaoxia Pan, Tong Li, Changmei Liao, Youyong Zhu, Mingzhi Yang
    2022 Volume 39 Issue 4 Pages 335-343
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: November 30, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    The metabolic patterns of grape cells can be specifically shaped by different strains of dual-cultured fungal endophytes. In this work, a solid co-culture system was furtherly proposed to illustrate the different impacts of endophytic fungi on the biochemical status of grape cells of different varieties. By measuring the metabolic impacts of contact fungal endophytes on grape cells of the varieties ‘Rose honey’ (RH) and ‘Cabernet sauvignon’ (CS), we observed that most of the fungal strains used had promoting effects on grape cellular biochemistry parameters. Compared with the control, inoculation with most of the fungal strains increased the superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) activities as well as the total flavonoid (TF) and total phenolics (TPh) contents in both types of grape cells. Among the tested strains, RH34, RH49 and MDR36 had relatively stronger biochemical impacts on grape cells. More interestingly, in addition to the varietal specificity, a certain degree of fungal genus specificity was also observed during the metabolic interactions between fungal endophytes and grape cells, as fungal endophytes from the same genus tended to be clustered into the same group based on the affected biochemical traits. This work revealed the differential biochemical status effects of fungal endophytes on different varietal grape cells and raised the possibility of reshaping grape qualities by applying endophytes.

    Download PDF (5835K)
  • Tatsushi Fukushima, Yutaka Kodama
    2022 Volume 39 Issue 4 Pages 345-354
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: November 26, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Marchantia polymorpha has emerged as a model liverwort species, with molecular tools increasingly available. In the present study, we developed an auxotrophic strain of M. polymorpha and an auxotrophic selective marker gene as new experimental tools for this valuable model system. Using CRISPR (clustered regularly interspaced palindromic repeats)/Cas9-mediated genome editing, we mutated the genomic region for IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (IGPD) in M. polymorpha to disrupt the biosynthesis of histidine (igpd). We modified an IGPD gene (IGPDm) with silent mutations, generating a histidine auxotrophic selective marker gene that was not a target of our CRISPR/Cas9-mediated genome editing. The M. polymorpha igpd mutant was a histidine auxotrophic strain, growing only on medium containing histidine. The igpd mutant could be complemented by transformation with the IGPDm gene, indicating that this gene could be used as an auxotrophic selective marker. Using the IGPDm marker in the igpd mutant background, we produced transgenic lines without the need for antibiotic selection. The histidine auxotrophic strain igpd and auxotrophic selective marker IGPDm represent new molecular tools for M. polymorpha research.

    Download PDF (5388K)
  • Bin Yang, Shan Sun, Shengyu Li, Jiali Zeng, Furong Xu
    2022 Volume 39 Issue 4 Pages 355-365
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: December 13, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Long-term seed dormancy of Paris polyphylla var. yunnanensis limits its large-scale artificial cultivation. It is crucial to understand the regulatory genes involving in dormancy release for artificial cultivation in this species. In this study, seed dormancy of Paris polyphylla var. yunnanensis was effectively released by warm stratification (20°C) for 90 days. The freshly harvested seeds (dormant) and stratified seeds (non-dormant) were used to sequence, and approximately 147 million clean reads and 28,083 annotated unigenes were detected. In which, a total of 10,937 differentially expressed genes (DEGs) were identified between dormant and non-dormant seeds. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classification revealed that the majority unigenes involved in signaling transduction and carbohydrate metabolism. Of them, the signaling transduction-related DEGs were mainly hormones-, reactive oxygen species (ROS)-, and transcription factor (TF)-related genes. The largest number of signaling transduction-related DEGs were auxin-responsive genes (SAUR, AUX/IAA, and ARF) and AP2-like ethylene-responsive transcription factor (ERF/AP2). Moreover, at least 29 DEGs such as α-amylase (AMY), β-glucosidase (Bglb/Bglu/Bglx), and endoglucanase (Glu) were identified involving in carbohydrate metabolism. These identified genes provide a valuable resource to investigate the molecular basis of dormancy release in Paris polyphylla var. yunnanensis.

    Download PDF (3299K)
  • Linda M. Robles, Laura H. Reichenberg, James H. Grissom Ⅲ, Richard J. ...
    2022 Volume 39 Issue 4 Pages 367-379
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: December 16, 2022
    JOURNAL OPEN ACCESS

    It is estimated that multiple sclerosis (MS) affects over 2.8 million people worldwide, with a prevalence that is expected to continue growing over time. Unfortunately, there is no cure for this autoimmune disease. For several decades, antigen-specific treatments have been used in animal models of experimental autoimmune encephalomyelitis (EAE) to demonstrate their potential for suppressing autoimmune responses. Successes with preventing and limiting ongoing MS disease have been documented using a wide variety of myelin proteins, peptides, autoantigen-conjugates, and mimics when administered by various routes. While those successes were not translatable in the clinic, we have learned a great deal about the roadblocks and hurdles that must be addressed if such therapies are to be useful. Reovirus sigma1 protein (pσ1) is an attachment protein that allows the virus to target M cells with high affinity. Previous studies showed that autoantigens tethered to pσ1 delivered potent tolerogenic signals and diminished autoimmunity following therapeutic intervention. In this proof-of-concept study, we expressed a model multi-epitope autoantigen (human myelin basic protein, MBP) fused to pσ1 in soybean seeds. The expression of chimeric MBP-pσ1 was stable over multiple generations and formed the necessary multimeric structures required for binding to target cells. When administered to SJL mice prophylactically as an oral therapeutic, soymilk formulations containing MBP-pσ1 delayed the onset of clinical EAE and significantly reduced developing disease. These results demonstrate the practicality of soybean as a host for producing and formulating immune-modulating therapies to treat autoimmune diseases.

    Download PDF (3263K)
  • Ryota Inoue, Naoto Nakamura, Chie Matsumoto, Hisabumi Takase, Jiro Sek ...
    2022 Volume 39 Issue 4 Pages 381-389
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: December 12, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Glutathione (GSH, γ-L-glutamyl-L-cysteinyl-glycine) has been implicated in a multitude of cellular functions, such as protection of cells against oxidative stress, detoxification of xenobiotics via degradation of GSH S-conjugates, and disease resistance. Glutathione also serves as a precursor of phytochelatins, and thereby plays an essential role in heavy metal detoxification. The Arabidopsis genome encodes three functional γ-glutamyltransferase genes (AtGGT1, AtGGT2, AtGGT4) and two phytochelatin synthase genes (AtPCS1, AtPCS2). The function of plant GGT has not yet been clearly defined, although it is thought to be involved in GSH and GSH S-conjugate catabolism. On the other hand, besides its role in heavy metal detoxification, PCS has also been involved in GSH S-conjugate catabolism. Herein we describe the HPLC characterization of GSH and GSH S-conjugate catabolism in Arabidopsis mutants deficient in GSH biosynthesis (pad2-1/gsh1), atggt and atpcs1 T-DNA insertion mutants, atggt pad2-1, atggt atpcs1 double mutants, and the atggt1 atggt4 atpcs1 triple mutant. The results of our HPLC analysis confirm that AtGGT and AtPCS play important roles in two different pathways related with GSH and GSH S-conjugate (GS-bimane) catabolism in Arabidopsis.

    Download PDF (2244K)
  • Miki Suenaga-Hiromori, Daisuke Mogi, Yohei Kikuchi, Jiali Tong, Naotsu ...
    2022 Volume 39 Issue 4 Pages 391-404
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: December 09, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Angelica archangelica L. is a traditional medicinal plant of Nordic origin that produces an unusual amount and variety of terpenoids. The unique terpenoid composition of A. archangelica likely arises from the involvement of terpene synthases (TPSs) with different specificities, none of which has been identified. As the first step in identifying TPSs responsible for terpenoid chemodiversity in A. archangelica, we produced a transcriptome catalogue using the mRNAs extracted from the leaves, tap roots, and dry seeds of the plant; 11 putative TPS genes were identified (AaTPS1–AaTPS11). Phylogenetic analysis predicted that AaTPS1–AaTPS5, AaTPS6–AaTPS10, and AaTPS11 belong to the monoterpene synthase (monoTPS), sesquiterpene synthase (sesquiTPS), and diterpene synthase clusters, respectively. We then performed in vivo enzyme assays of the AaTPSs using recombinant Escherichia coli systems to examine their enzymatic activities and specificities. Nine recombinant enzymes (AaTPS2–AaTPS10) displayed TPS activities with specificities consistent with their phylogenetics; however, AaTPS5 exhibited a strong sesquiTPS activity along with a weak monoTPS activity. We also analyzed terpenoid volatiles in the flowers, immature and mature seeds, leaves, and tap roots of A. archangelica using gas chromatography-mass spectrometry; 14 monoterpenoids and 13 sesquiterpenoids were identified. The mature seeds accumulated the highest levels of monoterpenoids, with β-phellandrene being the most prominent. α-Pinene and β-myrcene were abundant in all organs examined. The in vivo assay results suggest that the AaTPSs functionally identified in this study are at least partly involved in the chemodiversity of terpenoid volatiles in A. archangelica.

    Download PDF (3544K)
  • Kazunori Kuriyama, Midori Tabara, Hiromitsu Moriyama, Hideki Takahashi ...
    2022 Volume 39 Issue 4 Pages 405-414
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: December 08, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Petunia vein clearing virus (PVCV) is a type member of the genus Petuvirus within the Caulimoviridae family and is defined as one viral unit consisting of a single open reading frame (ORF) encoding a viral polyprotein and one quasi-long terminal repeat (QTR) sequence. Since some full-length PVCV sequences are found in the petunia genome and a vector for horizontal transmission of PVCV has not been identified yet, PVCV is referred to as an endogenous pararetrovirus. Molecular mechanisms of replication, gene expression and horizontal transmission of endogenous pararetroviruses in plants are elusive. In this study, agroinfiltration experiments using various PVCV infectious clones indicated that the replication (episomal DNA synthesis) and gene expression of PVCV were efficient when the QTR sequences are present on both sides of the ORF. Whereas replacement of the QTR with another promoter and/or terminator is possible for gene expression, it is essential for QTR sequences to be on both sides for viral replication. Although horizontal transmission of PVCV by grafting and biolistic inoculation was previously reported, agroinfiltration is a useful and convenient method for studying its replication and gene expression.

    Download PDF (2836K)
Short Communication
  • Lalita Jantean, Kentaro Okada, Yaichi Kawakatsu, Ken-ichi Kurotani, Mi ...
    2022 Volume 39 Issue 4 Pages 415-420
    Published: December 25, 2022
    Released on J-STAGE: December 25, 2022
    Advance online publication: November 30, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Reactive oxygen species (ROS) are critical for plant biological processes. As signaling molecules, ROS regulate plant growth and development through cell expansion, elongation, and programmed cell death. Furthermore, ROS production is induced by microbe-associated molecular patterns (MAMPs) treatment and biotic stresses, and contributes to plant resistance to pathogens. Thus, MAMP-induced ROS production has been an indicator for plant early immune responses or stress responses. One of widely used methods for the measurement is a luminol-based assay to measure extracellular ROS production with a bacterial flagellin epitope (flg22) as a MAMP elicitor. Nicotiana benthamiana is susceptible to a wide variety of plant pathogenic agents and therefore commonly used for ROS measurements. On the other hand, Arabidopsis thaliana, many of genetical lines of which are available, is also conducted to ROS measurements. Tests in an asterid N. benthamiana and a rosid A. thaliana can reveal conserved molecular mechanisms in ROS production. However, the small size of A. thaliana leaves requires many seedlings for experiments. This study examined flg22-induced ROS production in another member of the Brassicaceae family, Brassica rapa ssp. rapa (turnip), which has large and flat leaves. Our experiments indicated that 10 nM and 100 nM flg22 treatments induced high ROS levels in turnip. Turnip tended to have a lower standard deviation in multiple concentrations of flg22 treatment. Therefore, these results suggested that turnip can be a good material from the rosid clade for ROS measurement.

    Download PDF (1855K)
Note
feedback
Top