Modeling and simulation plays an important role in the design of the control systems for advanced powertrains. One clear trend is that turbocharged engines are becoming more common and are also being equipped with more than one boosting device. To systematically handle these advanced turbocharging concepts we need to build more knowledge and this knowledge is encapsulated in models.
Recent results for modeling and control of compressors in advanced engines are provided. In particular the experimental results from a large measurement campaign with engine and gas stand hardware are summarized as rules of thumb extrapolating manufacturer compressor data. Thereafter, system properties of V-engines with parallel turbocharging is investigated and used to illustrate applications of the newly developed modeling knowledge. It is used to model, simulate and analyze a compressor instability phenomenon that gives rise to an oscillation. A detection scheme and a controller is also developed and it is shown to quell the oscillation.
Finally the benefits of academic and industrial collaboration, that play an important role in the authors lab as well as in many European institutes, are commented upon. A concluding remark is that the works that are summarized would not have been possible without the cooperation between academy and industry.
Driven by the emission legislation, the government policy as well the market demands, the internal combustion engine (ICE) industry has made great progress in the past years in China. A vast number of enterprises, universities and research institutions invested great manpower, materials and financial resources to ICE, scored remarkable achievements in both theory and application. In this paper, the recent progress of ICE in China will be introduced systematically, including the homogeneous charge compression ignition (HCCI) combustion fundamental research, the engine control strategy development, the waste heat recovery, engine test technique, hybrid electrical vehicle control technology, on road fuel-saving strategy, as well as engine control unit (ECU) development.
ハードウェア・イン・ザ・ループ(HiL)シミュレーションは,コントロールユニットのシステムチェックに以前からよく使用されている手法である.同手法では通常,単純な物理モデルだけで,エンジン回転数やトルクなどの主要パラメータをリアルタイムで十分正確に計算することができる.しかし,排ガス排出量や燃料消費量などの正確な定量予測は,同モデルでは不可能である.このためHiLシステムは,今までコントロールユニットの適合には非常に制約のある形でしか使用されてこなかった.
しかし,新たなモデリング法を用いることにより,僅小数の測定データに基づき,複雑なシステムを非常に正確かつリアルタイム実行可能なモデルの構築ができる.そのため,たとえば燃焼エンジン特性をモデルにより非常に効果的に描出することが可能になった.
同モデルを用いることで,従来のモデルとHiLシステムで適合を行う際にあった制約は取り払われ,HiLシステムをコントロールユニットの特性値に対する排ガス排出量などの定量予測,つまりは法が定めるエミッション規制の検証に用いることが初めて可能となった.本記事ではモデリング手法について解説するとともに,ETAS製HiLシステムLABCAR,およびモデリングソリューションASCMOを用いて実際にHiLシステムを構築し,本手法の実用性について確認した事例を紹介する.