SOLA
Online ISSN : 1349-6476
ISSN-L : 1349-6476
最新号
Typhoons in 2018-2019
選択された号の論文の6件中1~6を表示しています
Editorial
  • Akiyoshi Wada
    2021 年 17A 巻 Special_Edition 号 p. i
    発行日: 2021年
    公開日: 2021/01/01
    ジャーナル オープンアクセス
    電子付録
    Typhoons are one of the most destructive weather systems with potentially serious impacts on human life, economics, social systems, and the environment. In particular, typhoons Jebi (2018), Faxai (2019), and Hagibis (2019), which made landfall in Japan, caused serious natural disasters in various areas of Japan and resulted in the record-breaking amount of insurance claims paid due to strong winds, torrential rainfalls, high waves, and storm surge. It is of great scientific interest that the causes and processes are clarified particularly on strong winds of Jebi and Faxai and heavy rainfall of Hagibis.
    Regarding the prediction of typhoon intensity in 2018-2019, rapid intensification and weakening of typhoons remain challenging scientific topics. The interactions between typhoon Trami (2018) and the ocean and between typhoon Jongdari (2018) and the upper-tropospheric cold-core low are interesting topics in understanding the effect on the typhoon track predictions. Furthermore, the effect of global warming on these meteorological events in the future are also topics of great interest in addition to the effect on climatological typhoon activity in the western North Pacific.
    In this special edition jointly coordinated with Journal of the Meteorological Society of Japan, we publish papers on all aspects of typhoons in 2018-2019, such as formation, movement, intensification, weakening, structure change, strong wind, heavy rainfall, high wave, storm surge, and the interaction with terrain, ocean, or midlatitude systems. We also publish papers on studies on the linkage between typhoons and climate processes that include both natural and anthropogenic origin and on the effect of global warming on meteorological events associated with typhoons in 2018-2019.
Article
  • Akiyoshi Wada, Johnny C. L. Chan
    2021 年 17A 巻 Special_Edition 号 p. 29-32
    発行日: 2021年
    公開日: 2021/03/18
    [早期公開] 公開日: 2021/01/11
    ジャーナル オープンアクセス
    電子付録

    In the 2019 tropical cyclone season in the western North Pacific, Typhoons FAXAI and HAGIBIS made landfall in Japan while keeping the intensity, resulting in serious disasters. This study addresses the influences of an increasing trend and variations in the upper ocean heat content above 26°C (tropical cyclone heat potential: TCHP) from January 1982 to June 2020 on FAXAI and HAGIBIS. TCHP underneath FAXAI and HAGIBIS in 2019 was higher than the climatological mean except for a part of mature phase of HAGIBIS due to HAGIBIS-induced sea surface cooling. TCHP significantly increased with the interannual oceanic variations (IOVs) in the subtropical (15°N-20°N, 140°E-150°E) and midlatitude (30°N-35°N, 130°E-140°E) areas where FAXAI and HAGIBIS intensified or kept the intensity. From an empirical orthogonal function (EOF) analysis of TCHP, we demonstrate that the leading three EOF modes of TCHP explain approximately 76.8% of total variance, but the increase in TCHP along the tracks of FAXAI and HAGIBIS particularly in the early intensification of HAGIBIS cannot be explained only by the IOVs included in the leading three EOF modes but rather by the warming trend irrespective of the IOVs.

  • Satoshi Iizuka, Ryuichi Kawamura, Hisashi Nakamura, Toru Miyama
    2021 年 17A 巻 Special_Edition 号 p. 21-28
    発行日: 2021年
    公開日: 2021/02/23
    [早期公開] 公開日: 2020/12/21
    ジャーナル オープンアクセス
    電子付録

    Typhoon Hagibis (2019) caused widespread flooding and damage over eastern Japan. The associated rainfall maxima were primarily observed on the windward mountain slopes along with the west of the leading edge of a low-level front. Concomitantly, a significant positive value in sea surface temperature anomalies (SSTAs) was observed in association with an ocean eddy over the Oyashio region, together with anomalous warmth over the entire western North Pacific. The present study examines the role of the SSTAs in the rainfall distribution associated with Hagibis, to deepen our understanding of the influence of the midlatitude ocean on tropical cyclones and associated rainfall. Our sensitivity experiments demonstrate that the observed warm SSTAs had the potential to displace the rainfall caused by Hagibis inland and thereby acted to increase precipitation along the Pacific coast of northeastern Japan. Our results suggest that midlatitude SSTAs on ocean-eddy scales can also influence the synoptic-scale atmospheric front and associated heavy rainfall.

  • Sachie Kanada, Hidenori Aiki, Kazuhisa Tsuboki, Izuru Takayabu
    2021 年 17A 巻 Special_Edition 号 p. 14-20
    発行日: 2021年
    公開日: 2021/01/28
    [早期公開] 公開日: 2020/12/16
    ジャーナル オープンアクセス
    電子付録

    Numerical experiments on Typhoon Trami (2018) using a regional 1-km-mesh three-dimensional atmosphere–ocean coupled model in current and pseudo-global warming (PGW) climates were conducted to investigate future changes of a slow-moving intense typhoon under the warming climate. Over the warmer sea in the PGW climate, the maximum near-surface wind speed rapidly increased around the large eye of the simulated Trami. The stronger winds in the PGW simulation versus the current simulation caused a 1.5-fold larger decrease of sea surface temperature (SST) in the storm core-region. In the PGW climate, near-surface air temperature increased by 3.1°C. A large SST decrease due to ocean upwelling caused downward heat fluxes from the atmosphere to the ocean. The magnitude of the SST decrease depended strongly on initial ocean conditions. Consideration of the SST decrease induced by an intense typhoon, and a slow-moving storm in particular, indicated that such a typhoon would not always become more intense under the warmer climate conditions. An atmosphere–ocean coupled model should facilitate making more reliable projections of typhoon intensities in a warming climate.

  • Hiroaki Kawase, Munehiko Yamaguchi, Yukiko Imada, Syugo Hayashi, Akihi ...
    2021 年 17A 巻 Special_Edition 号 p. 7-13
    発行日: 2021年
    公開日: 2021/01/28
    [早期公開] 公開日: 2020/12/24
    ジャーナル オープンアクセス
    電子付録

    Impacts of historical warming on extremely heavy rainfall induced by Typhoon Hagibis (2019) are investigated using a storyline event attribution approach with the Japan Meteorological Agency Nonhydrostatic Model (JMA-NHM). Control experiments based on JMA mesoscale analysis data well reproduce the typhoon's track, intensity, and heavy precipitation. First, two non-warming experiments are conducted: One excludes both 40-year atmospheric and oceanic temperature trends from 1980 to 2019, and the other excludes the oceanic trend only. A comparison between control and non-warming experiments indicates that historical warming strengthens typhoons and increases the amount of total precipitation by 10.9% over central Japan. The difference between CTL and non-warming experiments without both atmospheric and oceanic temperature trends is larger than that without just the oceanic trend (7.3%). Additional sensitivity experiments without Japan's topography indicate that topography enhances not only total precipitation but also the changes in total precipitation due to historical warming. Through the storyline event attribution approach, it is concluded that historical warming intensifies strength of Typhoon Hagibis (2019) and enhances the extremely heavy precipitation induced by the typhoon.

  • Kosuke Ito, Hana Ichikawa
    2021 年 17A 巻 Special_Edition 号 p. 1-6
    発行日: 2021年
    公開日: 2021/01/01
    [早期公開] 公開日: 2020/08/31
    ジャーナル オープンアクセス
    電子付録

    One of the remarkable environmental characteristics of tropical cyclone (TC) Hagibis (2019) was the positive sea surface temperature (SST) anomaly observed in the western North Pacific Ocean. In this study, an ensemble-based sensitivity experiment was conducted with a nonhydrostatic model, focusing on the impact of SST on TC motion. The TC with the analyzed SST (warm run) moved faster near mainland Japan than with the lowered SST (cold run), as the TC in the warm run was embedded earlier in the mid-latitude westerly jet located to the north than that in the cold run. The TC displacement was consistent with the large decrease of geopotential height at 500-hPa (Z500) in the north of TC Hagibis during the warm run. Further investigation showed that the approach to the westerly jet presumably induced the low local inertial stability as well as the southwesterly vertical wind shear enhancing the upward mass flux in the north of the TC. They led the enhanced upper-tropospheric northward outflow from the TC energized by the warm SST, and it resulted in the decrease of the Z500 in the north. This study suggests that warm SST can affect TC tracks through interaction with mid-latitude westerly jets.

feedback
Top