Spinal Surgery
Online ISSN : 1880-9359
Print ISSN : 0914-6024
ISSN-L : 0914-6024
Volume 30, Issue 1
Displaying 1-15 of 15 articles from this issue
Vistas
Special Contributions
Guidelines
Reviews and Opinions
Review-Essentials
Forum-Strategies & Indications
Review Articles
  • Yaoki Nakao
    2016 Volume 30 Issue 1 Pages 83-87
    Published: 2016
    Released on J-STAGE: July 06, 2016
    JOURNAL FREE ACCESS
      Most patients with significant spinal cord damage have permanent symptoms and may be wheelchair-bound, depending on their residual motor function below the spinal cord lesion. Spinal cord damage, whether caused by injury or disease, is currently not repaired by any therapy. The sensory, motor, and autonomic functions of each segment depend crucially on connections with supraspinal sites for all conscious or voluntary actions. Damage to these connections leaves spinal segments caudal to the lesion site partially or totally isolated from the brain, resulting in debilitating consequences. Studies in humans have demonstrated, however, that the lumbosacral spinal circuitry retains an intrinsic capability to oscillate and generate coordinated rhythmic motor activity even when isolated from brain control. Although the anatomical architecture of locomotor central pattern generators remains poorly understood in mammals, the functional phenomenon of central pattern generation has been documented extensively. Techniques to stimulate spinal networks lend themselves as potent tools to facilitate locomotor recovery after severe spinal cord injury. Among several experimental strategies tested for activation of locomotor circuits in mammals after complete spinal cord transection, electrical stimulation has been investigated in human spinal cord injury. A recent clinical study demonstrated that some patients with complete paralysis were able to perform voluntarily controlled movements with epidural stimulation. In combination with epidural electrical stimulation of lumbosacral segments, activity-based rehabilitation can restore supraspinally mediated movements. Electrical neuromodulation therapies that activate spinal cord central pattern generators open up new avenues for treatment of spinal cord injury in human subjects.
    Download PDF (474K)
  • Yoshiharu Kawaguchi
    2016 Volume 30 Issue 1 Pages 88-92
    Published: 2016
    Released on J-STAGE: July 06, 2016
    JOURNAL FREE ACCESS
      Osteoporotic vertebral fracture (OVF) is a common condition in the elderly population. Vertebroplasty and kyphoplasty were introduced in the 1990s and since then, became standard procedures for the treatment of OVF. Balloon kyphoplasty (BKP) is a technique that involves percutaneous advancement of a trocar in the fractured vertebral body (VB), followed by the insertion of a special balloon, which is subsequently inflated for restoring the height of the VB. The space created by the balloon is filled with polymethylmethacrylate to restore stability. BKP has been used for 5 years in Japan, and its outcome has been described in several reports. In this paper, we review previous studies and reports on the surgical results, efficacy, and limitations of BKP.
    Download PDF (1648K)
Extended Abstracts
feedback
Top