人工知能学会論文誌
検索
OR
閲覧
検索
30 巻 , 4 号
一般論文
選択された号の論文の2件中1~2を表示しています
    • |<
    • <
    • 1
    • >
    • >|
一般論文
原著論文
  • 小林 一樹, 船越 孝太郎, 小松 孝徳, 山田 誠二, 中野 幹生
    30 巻 (2015) 4 号 p. 604-612
    公開日: 2015/05/21
    ジャーナル フリー
    In this paper, we describe an investigation into users' experiences of a simple talking robot with back-channel feedbacks that is designed based on an artificial subtle expression (ASE). In the experiments with participants, they are divided into six conditions based on an expression factor (three levels; human-like speech, blinking light, and beeping sound) and a timing decision method factor (two levels; a linguistic method and an acoustic method) for investigating participants' impressions on the dialogue experience. We developed an electric pedestal to show the blinking expression, on which a simple cubic robot was fixed. Participants engaged in a task of explaining a cooking procedure with a spoken dialogue system coupled with the robot on the pedestal. The robots responded to them by making the back-channel feedbacks in accordance with the expression factor. The results of questionnaire analyses suggested that the ASE-based expressions of back-channel feedback provide positive experiences for users.
    抄録全体を表示
  • 則 のぞみ, ボレガラ ダヌシカ, 石塚 満
    30 巻 (2015) 4 号 p. 613-625
    公開日: 2015/07/03
    ジャーナル フリー
    We propose a method to predict users' interests by exploiting their various actions in social media. Actions performed by users in social media such as Twitter and Facebook have a fundamental property: user action involves multiple entities - e.g. sharing URLs with friends, bookmarking and tagging web pages, clicking a favorite button on a friend's post etc. Consequently, it is appropriate to represent each user's action at some point in time as a higher-order relation. We propose ActionGraph, a novel graph representation to model users' higher-order actions. Each action performed by a user at some time point is represented by an action node. ActionGraph is a bipartite graph whose edges connect an action node to its involving entities, referred to as object nodes. Using real-world social media data, we empirically justify the proposed graph structure. We show that the prediction accuracy can be improved by adequately aggregating various actions. Moreover, our experimental results show that the proposed ActionGraph outperforms several baselines, including standard tensor analysis PARAFAC, a previously proposed state-of-the-art LDA-based method and other graph-based variants, in a user interest prediction task. Although a lot of research have been conducted to capture similarity between users or between users and resources by using graph, our paper indicates that an important factor for the prediction performance of the graph mining algorithm is the choice of the graph itself. In particular, our result indicates that in order to predict users activities, adding more specific information about users activities such as types of activities makes the graph mining algorithm more effective.
    抄録全体を表示
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top