A numerical simulation was carried out corresponding to recent experiments using delta wings with sharp and blunt leading-edges, which indicates
the second primary vortex, at NASA Langley Research Center. However, the experimental data did not reveal the detailed physical phenomena regarding the second primary vortex, because the experiment used only on-the-body-surface data. In the present study, the physical phenomena were revealed using Reynolds-averaged Navier-Stokes computations with three one-equation turbulence models on an unstructured hybrid mesh. The adaptive mesh refinement method in the vicinity of the vortex center was also applied to have more mesh resolution. Consequently, the result quantitatively revealed that appropriate modeling regarding turbulent kinematic viscosity was significant. Moreover, the three-dimensional visualization of the computational fluid dynamics results suggested that the second primary vortex was a developing shear layer merging into an open-type separation generated late by the primary vortex.
抄録全体を表示