The integrated missile design optimization process is proposed by implementing the aerodynamics database (Aero DB) and tactical missile design (TMD) spreadsheet to obtain a quick and relatively accurate optimal air intercept missile configuration at the conceptual design stage. The Aero DB is constructed to replace an existing aerodynamics analysis module in the TMD spreadsheet and to provide stability and control coefficients as constraints for improving missile range performance based on the body-wing-tail configuration baseline. Sensitivity analysis is performed on an entire missile geometry and flight condition variables to eliminate the small effects of design variables on missile range and constraints under a PHX ModerCenter
® 10.1 integration environment. The optimal missile configuration shows 27.8% improvement in total range compared with a body-wing-tail configuration baseline while all constraints are satisfied. The proposed integration of the missile design program using Aero DB demonstrates more accurate and reliable results which are validated by high-fidelity analysis ANSYS Fluent 13
® on the optimal missile configuration compared with TMD aerodynamics analysis results. The maximum difference between ANSYS Fluent and Missile DATCOM is 11.76% at 10 degrees of AoA compared with 37.97% for TMD aerodynamics analysis and ANSYS Fluent difference.
抄録全体を表示