IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Volume E98.B, Issue 10
Displaying 1-18 of 18 articles from this issue
Special Section on 5G Radio Access Networks - Part II: Multi-RAT Heterogeneous Networks and Smart Radio Technologies
  • Seiichi SAMPEI
    2015 Volume E98.B Issue 10 Pages 1931
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL FREE ACCESS
    Download PDF (320K)
  • Kei SAKAGUCHI, Ehab Mahmoud MOHAMED, Hideyuki KUSANO, Makoto MIZUKAMI, ...
    Article type: INVITED PAPER
    2015 Volume E98.B Issue 10 Pages 1932-1948
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL FREE ACCESS
    Millimeter-wave (mmw) frequency bands, especially 60GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is distributed antenna type architecture to realize centralized coordination, while the other is autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.
    Download PDF (5933K)
  • Markus MUECK, Majdi MSALLEM, Christian DREWES, Markus STINNER
    Article type: INVITED PAPER
    2015 Volume E98.B Issue 10 Pages 1949-1956
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL FREE ACCESS
    This contribution addresses optimum wireless link selection in a 5G heterogeneous Multicomm environment in which multiple distinct Radio Access Technologies can be operated simultaneously by a given Mobile Device. The related decision making mechanisms are proposed to be part of the Mobile Device User Equipment which identifies the preferred Radio Access Technologies to be operated as well as the preferred Modulation and Coding parameters and finally selects the optimum choice either independently or through negotiation with the Network Infrastructure Equipment. In this context, the concerned Mobile Device is able to manage the bandwidth to be employed for communication — the bandwidth per Radio Access Technology is typically defined by the Network Infrastructure but the possibility for aggregating a multitude of distinct technologies introduces a new degree of freedom enabling the choice of the bandwidth selection. Simulation results demonstrate that the Mobile Device driven selection of a Multicomm configuration may either substantially reduce Mobile Device power consumption (75% in a typical example) or increase the aggregate throughput at an identical power consumption level compared to the single link case (a 3x factor in a typical example).
    Download PDF (1763K)
  • Hailan PENG, Toshiaki YAMAMOTO, Yasuhiro SUEGARA
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 1957-1968
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    Heterogeneous networks (HetNet) with different radio access technologies have been deployed to support a range of communication services. To manage these HetNets efficiently, some interworking solutions such as MIH (media independent handover), ANQP (access network query protocol) or ANDSF (access network discovery and selection function) have been studied. Recently, the millimeter-wave (mm-wave) based HetNet has been explored to provide multi-gigabits-per-second data rates over short distances in the 60GHz frequency band for 5G wireless networks. WiGig (Wireless Gigabit Alliance) is one of the available radio access technologies using mm-wave. However, the conventional interworking solutions are not sufficient for the implementation of LTE (Long Term Evolution)/WiGig HetNets. Since the coverage area of WiGig is very small due to the high propagation loss of the mm-wave band signal, it is difficult for UEs to perform cell discovery and handover if using conventional LTE/WLAN (wireless local area networks) interworking solutions, which cannot support specific techniques of WiGig well, such as beamforming and new media access methods. To solve these problems and find solutions for LTE/WiGig interworking, RAN (radio access network)-level tightly coupled interworking architecture will be a promising solution. As a RAN-level tightly coupled interworking solution, this paper proposes to design a LTE/WiGig protocol adaptor above the protocol stacks of WiGig to process and transfer control signaling and user data traffic. The proposed extended control plane can assist UEs to discover and access mm-wave BSs successfully and support LTE macro cells to jointly control the radio resources of both LTE and WiGig, so as to improve spectrum efficiency. The effectiveness of the proposal is evaluated. Simulation results show that LTE/WiGig HetNets with the proposed interworking solution can decrease inter-cell handover and improve user throughput significantly. Moreover, the downlink backhaul throughput and energy efficiency of mm-wave HetNets are evaluated and compared with that of 3.5GHz LTE HetNets. Results indicate that 60GHz mm-wave HetNets have better energy efficiency but with much heavier backhaul overhead.
    Download PDF (3359K)
  • Riichi KUDO, B. A. Hirantha Sithira ABEYSEKERA, Yusuke ASAI, Takeo ICH ...
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 1969-1977
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL FREE ACCESS
    Combining heterogeneous wireless networks that cross licensed and unlicensed spectra is a promising way of supporting the surge in mobile traffic. The unlicensed band is mostly used by wireless LAN (WLAN) nodes which employ carrier sense multiple access/collision avoidance (CSMA/CA). Since the number of WLAN devices and their traffic are increasing, the wireless resource of the unlicensed band is expected be more depleted in 2020s. In such a wireless environment, the throughput could be extremely low and unstable due to the hidden terminal problem and exposed terminal problem despite of the large resources of the allocated frequency band and high peak PHY rate. In this paper, we propose user equipment (UE) centric access in the unlicensed band, with support by licensed band access in the mobile network. The proposed access enables robust downlink transmission from the access point (AP) to the UEs by mitigating the hidden terminal problem. The licensed spectrum access passes information on the user data waiting at the AP to the UEs and triggers UE reception opportunity (RXOP) acquisition. Furthermore, the adaptive use of UE centric downlink access is presented by using the channel utilization measured at the AP. Computer simulations confirm that licensed access assistance enhances the robustness of the unlicensed band access against the hidden terminal problem.
    Download PDF (3539K)
  • Huifa LIN, Koji ISHIBASHI, Won-Yong SHIN, Takeo FUJII
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 1978-1987
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, we introduce a distributed power allocation strategy for random access, that has the capabilities of multipacket reception (MPR) and successive interference cancellation (SIC). The proposed random access scheme is suitable for machine-to-machine (M2M) communication application in fifth-generation (5G) cellular networks. A previous study optimized the probability distribution for discrete transmission power levels, with implicit limitations on the successful decoding of at most two packets from a single collision. We formulate the optimization problem for the general case, where a base station can decode multiple packets from a single collision, and this depends only on the signal-to-interference-plus-noise ratio (SINR). We also propose a feasible suboptimal iterative per-level optimization process; we do this by introducing relationships among the different discrete power levels. Compared with the conventional power allocation scheme with MPR and SIC, our method significantly improves the system throughput; this is confirmed by computer simulations.
    Download PDF (1626K)
  • Qun LI, Ding XU
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 1988-1995
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    The problem of power allocation for the secondary user (SU) in a cognitive radio (CR) network is investigated in this paper. The primary user (PU) is protected by the average interference power constraint. Besides the average interference power constraint at the PU, the transmit power of the SU is also subject to the peak or average transmit power constraint. The aim is to balance between the goal of maximizing the ergodic capacity and the goal of minimizing the outage probability of the SU. Power allocation schemes are then proposed under the aforementioned setups. It is shown that the proposed power allocation schemes can achieve high ergodic capacity while maintaining low outage probability, whereas existing schemes achieve either high ergodic capacity with high outage probability or low outage probability with low ergodic capacity.
    Download PDF (1140K)
  • Hiep VU-VAN, Insoo KOO
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 1996-2003
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    A cognitive radio user (CU) can get assistance from sensor nodes (SN) to perform spectrum sensing. However, the SNs are often powered by a finite-capacity battery, which can maintain operations of the SNs over a short time. Therefore, energy-efficiency of the SNs becomes a crucial problem. In this paper, an SN is considered to be a device with an energy harvester that can harvest energy from a non-radio frequency (non-RF) energy resource while performing other actions concurrently. In any one time slot, in order to maintain the required sensing accuracy of the CR network and to conserve energy in the SNs, only a small number of SNs are required to sense the primary user (PU) signal, and other SNs are kept silent to save energy. For this, an algorithm to divide all SNs into groups that can satisfy the required sensing accuracy of the network, is proposed. In a time slot, each SN group can be assigned one of two actions: stay silent, or be active to perform sensing. The problem of determining the optimal action for all SN groups to maximize throughput of the CR network is formulated as a framework of a partially observable Markov decision process (POMDP), in which the effect of the current time slot's action on the throughput of future time slots is considered. The solution to the problem, that is the decision mode of the SN groups (i.e., active or silent), depends on the residual energy and belief of absence probability of the PU signal. The simulation results show that the proposed scheme can improve energy efficiency of CR networks compared with other conventional schemes.
    Download PDF (1094K)
  • Koya SATO, Masayuki KITAMURA, Kei INAGE, Takeo FUJII
    Article type: PAPER
    2015 Volume E98.B Issue 10 Pages 2004-2013
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, we propose the novel concept of a spectrum database for improving the efficiency of spectrum utilization. In the current design of TV white space spectrum databases, a propagation model is utilized to determine the spectrum availability. However, this propagation model has poor accuracy for radio environment estimation because it requires a large interference margin for the PU coverage area to ensure protection of primary users (PUs); thus, it decreases the spectrum sharing efficiency. The proposed spectrum database consists of radio environment measurement results from sensors on mobile terminals such as vehicles and smart phones. In the proposed database, actual measurements of radio signals are used to estimate radio information regarding PUs. Because the sensors on mobile terminals can gather a large amount of data, accurate propagation information can be obtained, including information regarding propagation loss and shadowing. In this paper, we first introduce the architecture of the proposed spectrum database. Then, we present experimental results for the database construction using actual TV broadcast signals. Additionally, from the evaluation results, we discuss the extent to which the proposed database can mitigate the excess interference margin.
    Download PDF (2742K)
Regular Section
  • Akihiro KADOHATA, Atsushi WATANABE, Akira HIRANO, Hiroshi HASEGAWA, Ke ...
    Article type: PAPER
    Subject area: Fiber-Optic Transmission for Communications
    2015 Volume E98.B Issue 10 Pages 2014-2021
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    We propose a new extension to reconfiguration algorithms used to address wavelength defragmentation to enhance the path accommodation efficiency in optical transparent wavelength division multiplexing networks. The proposed algorithm suppresses the number of fibers employed to search for a reconfigurable wavelength channel by combining routes between the target path and the existing path in a reconfigured wavelength channel. This paper targets three main phases in reconfiguration: i) the reconfiguration trigger; ii) redesign of the wavelength path; and iii) migrating the wavelength paths. The proposed and conventional algorithms are analyzed from the viewpoints of the number of fibers, accommodation rate and the number of migrating sequences. Numerical evaluations show that the number of fibers is suppressed by 9%, and that the accommodation efficiency is increased by approximately 5%-8% compared to when reconfiguration is not performed.
    Download PDF (1781K)
  • Sajjad BAGHAEE, Sevgi ZUBEYDE GURBUZ, Elif UYSAL-BIYIKOGLU
    Article type: PAPER
    Subject area: Network
    2015 Volume E98.B Issue 10 Pages 2022-2032
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    Wireless sensor networks (WSNs) are ubiquitous in a wide range of applications requiring the monitoring of physical and environmental variables, such as target localization and identification. One of these applications is the sensing of ferromagnetic objects. In typical applications, the area to be monitored is typically large compared to the sensing radius of each magnetic sensor. On the other hand, the RF communication radii of WSN nodes are invariably larger than the sensing radii. This makes it economical and efficient to design and implement a sparse network in terms of sensor coverage, in which each point in the monitored area is likely to be covered by at most one sensor. This work aims at investigating the sensing potential and limitations (e.g. in terms of localization accuracy on the order of centimeters) of the Honeywell HMC 1002 2-axis magnetometer used in the context of a sparse magnetic WSN. The effect of environmental variations, such as temperature and power supply fluctuations, magnetic noise, and sensor sensitivity, on the target localization and identification performance of a magnetic WSN is examined based on experimental tests. Signal processing strategies that could enable an alternative to the typical “target present/absent” mode of using magnetic sensors, such as providing successive localization information in time, are discussed.
    Download PDF (2343K)
  • Hye J. KANG, Chung G. KANG
    Article type: PAPER
    Subject area: Network
    2015 Volume E98.B Issue 10 Pages 2033-2039
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, we consider a distributed power control scheme that can maximize overall capacity of an interference-limited wireless system in which the same radio resource is spatially reused among different transmitter-receiver pairs. This power control scheme employs a gradient-descent method in each transmitter, which adapts its own transmit power to co-channel interference dynamically to maximize the total weighted sum rate (WSR) of the system over a given interval. The key contribution in this paper is to propose a common feedback channel, over which a backward physical signal is accumulated for computing the gradient of the transmit power in each transmitter, thereby significantly reducing signaling overhead for the distributed power control. We show that the proposed power control scheme can achieve almost 95% of its theoretical upper WSR bound, while outperforming the non-power-controlled system by roughly 63% on average.
    Download PDF (1273K)
  • Zhenxiang GAO, Yan SHI, Shanzhi CHEN, Qihan LI
    Article type: PAPER
    Subject area: Network
    2015 Volume E98.B Issue 10 Pages 2040-2048
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    Routing is a challenging issue in mobile social networks (MSNs) because of time-varying links and intermittent connectivity. In order to enable nodes to make right decisions while forwarding messages, exploiting social relationship has become an important method for designing efficient routing protocols in MSNs. In this paper, we first use the temporal evolution graph model to accurately capture the dynamic topology of the MSN. Based on the model, we introduce the social relationship metric for detecting the quality of human social relationship from contact history records. Utilizing this metric, we propose social relationship based betweenness centrality metric to identify influential nodes to ensure messages forwarded by the nodes with stronger social relationship and higher likelihood of contacting other nodes. Then, we present SRBet, a novel social-based forwarding algorithm, which utilizes the aforementioned metric to enhance routing performance. Simulations have been conducted on two real world data sets and results demonstrate that the proposed forwarding algorithm achieves better performances than the existing algorithms.
    Download PDF (2054K)
  • Noriaki KAMIYAMA, Yousuke TAKAHASHI, Keisuke ISHIBASHI, Kohei SHIOMOTO ...
    Article type: PAPER
    Subject area: Network
    2015 Volume E98.B Issue 10 Pages 2049-2059
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    Although the use of software-defined networking (SDN) enables routes of packets to be controlled with finer granularity (down to the individual flow level) by using traffic engineering (TE) and thereby enables better balancing of the link loads, the corresponding increase in the number of states that need to be managed at routers and controller is problematic in large-scale networks. Aggregating flows into macro flows and assigning routes by macro flow should be an effective approach to solving this problem. However, when macro flows are constructed as TE targets, variations of traffic rates in each macro flow should be minimized to improve route stability. We propose two methods for generating macro flows: one is based on a greedy algorithm that minimizes the variation in rates, and the other clusters micro flows with similar traffic variation patterns into groups and optimizes the traffic ratio of extracted from each cluster to aggregate into each macro flow. Evaluation using traffic demand matrixes for 48 hours of Internet2 traffic demonstrated that the proposed methods can reduce the number of TE targets to about 1/50 ∼ 1/400 without degrading the link-load balancing effect of TE.
    Download PDF (1853K)
  • Wei WANG, Ben WANG, Xiangpeng WANG, Ping HUANG
    Article type: PAPER
    Subject area: Antennas and Propagation
    2015 Volume E98.B Issue 10 Pages 2060-2067
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, a novel approach for central angle estimation of coherently distributed targets that utilizes electric vector sensors in bistatic MIMO radar is proposed. First, the coherently distributed targets signal model in bistatic MIMO radar that equipped with electric vector sensors is reconstructed. The Hadamard product rotation invariance property of the coherently distributed targets' steering vectors is found to get the initial estimation of direction of departure (DOD). 1-D MUSIC is then used to estimate the accurate central angles of direction of arrival (DOA) and DOD. The proposed method can estimate the central angles of DOA and DOD efficiently and accurately without pairing even in the situation where the angular signal distribution functions are unknown. Our method has better performance than Guo's algorithm. Numerical results verify the improvement and performance of the proposed algorithm.
    Download PDF (1448K)
  • Hiroyuki MIYAZAKI, Fumiyuki ADACHI
    Article type: PAPER
    Subject area: Wireless Communication Technologies
    2015 Volume E98.B Issue 10 Pages 2068-2078
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, we propose a transmit multi-block frequency-domain equalization (MB-FDE) for frequency-domain space-time block coded joint transmit/receive diversity (FD-STBC-JTRD). Noting that a STBC codeword consists of multiple coded blocks, the transmit MB-FDE uses the multiple transmit FDE weight matrices, each associated with each coded block. Both single-carrier (SC) transmission and orthogonal frequency-division multiplexing (OFDM) transmission are considered. For SC transmission, the transmit MB-FDE weight matrices are jointly optimized so as to minimize the mean square error (MSE) between the transmit signal before STBC encoding and the received signal after STBC decoding. For OFDM transmission, they are jointly optimized so as to maximize the received signal-to-noise power ratio (SNR) after STBC decoding. We show by theoretical analysis that the proposed transmit MB-FDE can achieve 1/RSTBC times higher received SNR than the conventional transmit single-block FDE (SB-FDE), where RSTBC represents the code rate of STBC. It is confirmed by computer simulation that, when more than 2 receive antennas are used, MB-FDE can always achieve better BER performance than SB-FDE irrespective of the number of transmit antennas, and the channel frequency-selectivity.
    Download PDF (1631K)
  • Jeong-Min CHOI, Robin SHRESTHA, Sungho JEON, Jong-Soo SEO
    Article type: PAPER
    Subject area: Wireless Communication Technologies
    2015 Volume E98.B Issue 10 Pages 2079-2096
    Published: October 01, 2015
    Released on J-STAGE: October 01, 2015
    JOURNAL RESTRICTED ACCESS
    In this paper, we study a distributed time-reversal space-time block coded single-carrier (D-TR-STBC-SC) system for amplify-and-forward (AF) half-duplex relaying in frequency-selective Rayleigh fading channels. Under the imperfect channel estimation condition, we analyze the mean-square-error (MSE) performance of the optimal and channel-mismatched frequency domain minimum MSE (FD-MMSE) and least square (LS) equalization. Our analysis results show that, unlike the point-to-point communications, the channel-mismatched FD-MMSE equalization of D-TR-STBC-SC relaying network leads to the ceiling effect that the MSE increases as the signal-to-noise ratio (SNR) of relay-to-destination link increases. Decomposing the MSE, it is found that the primary cause of the ceiling effect is the source-to-destination link in the first time-slot, which makes the covariance matrix of noise vector ill-conditioned. In order to resolve the channel-mismatching problems in the equalization process, we develop optimum relay power control strategies by considering practical channel estimations, i.e., training-based LS and linear minimum MSE (LMMSE) channel estimations. It is shown that the optimum power control resolves the trade-off between MSE performance and relay power consumption, and improves the robustness against the channel-mismatching. Finally, we introduce a performance evaluation to demonstrate the performance of channel equalization combined with the proposed power controls in D-TR-STBC-SC relaying network.
    Download PDF (2463K)
Errata
feedback
Top