Thermal Science and Engineering
Online ISSN : 1882-2592
Print ISSN : 0918-9963
ISSN-L : 0918-9963
Volume 20 , Issue 2
Showing 1-2 articles out of 2 articles from the selected issue
  • Yoichi MURAKAMI
    2012 Volume 20 Issue 2 Pages 15-26
    Published: 2012
    Released: August 10, 2012
    JOURNALS FREE ACCESS
    Photon upconversion based on triplet-triplet annihilation (TTA) of excited triplet molecules is drawing attention due to its applicability for weak incident light, possessing a potential for improving efficiencies of solar energy conversion devices. Since energy transfer between triplet levels of different molecules and TTA are based on the Dexter mechanism, inter-molecular collision is necessary and hence the majority of previous studies have been done with organic solvents, which are volatile and flammable. This paper presents the development and characterization of phase-stable photon upconverters fabricated with ionic liquids, which are room temperature molten salts with negligible vapor pressure and high thermal stability. The employed aromatic molecules, which are carrier of photo-created energies and are non-polar (or weakly polar) molecules, are found to be stable in the polar environment of ionic liquids, contrary to expectation. The mechanism of the stable solvation is proposed. The upconversion quantum yields are found to rapidly saturate as the excitation light power increases. An analytical model was developed and compared with the experimental data. It is shown that ionic liquids are not viscous media for the purpose of TTA-based upconversion.
    Download PDF (3554K)
  • Koji NISHI
    2012 Volume 20 Issue 2 Pages 27-34
    Published: 2012
    Released: August 10, 2012
    JOURNALS FREE ACCESS
    This paper explains about fundamental formula of calculating power consumption of CMOS (Complementary Metal-Oxide-Semiconductor) devices and its voltage and temperature dependency, then introduces equation for estimating power consumption of the microprocessor for notebook PC (Personal Computer). The equation is applied to heat conduction simulation with simplified thermal model and evaluates in sub-millisecond time step calculation. In addition, the microprocessor has two major heat conduction paths; one is from the top of the silicon die via thermal solution and the other is from package substrate and pins via PGA (Pin Grid Array) socket. Even though the dominant factor of heat conduction is the former path, the latter path - from package substrate and pins - plays an important role in transient heat conduction behavior. Therefore, this paper tries to focus the path from package substrate and pins, and to investigate more accurate method of estimating heat conduction paths of the microprocessor. Also, cooling performance expression of heatsink fan is one of key points to assure result with practical accuracy, while finer expression requires more computation resources which results in longer computation time. Then, this paper discusses the expression to minimize computation workload with a practical accuracy of the result.
    Download PDF (1305K)
feedback
Top