Potential risks to the fetus or infant should be considered prior to medication during pregnancy and lactation. It is essential to evaluate the exposure levels of drugs and their related factors in addition to toxicological effects. Epilepsy is one of the most common neurological complications in pregnancy; some women continue to use antiepileptic drugs (AEDs) to control seizures. Benzodiazepines (BZDs) are widely prescribed for several women who experience symptoms such as anxiety and insomnia during the postpartum period. In this review, we describe the 1) transport mechanisms of AEDs across the placenta and the effects of these drugs on placental transporters, and 2) the transfer of BZDs into breast milk. Our findings indicated that carrier systems were involved in the uptake of gabapentin (GBP) and lamotrigine (LTG) in placental trophoblast cell lines. SLC7A5 was the main contributor to GBP transport in placental cells. LTG was transported by a carrier that was sensitive to chloroquine, imipramine, quinidine, and verapamil. Short-term exposure to 16 AEDs had no effect on folic acid uptake in placental cells. However, long-term exposure to valproic acid (VPA) affected the expression of folate carriers (FOLR1, SLC46A1). Furthermore, VPA administration changed the expression levels of various transporters in rat placenta, suggesting that sensitivity to VPA differed across gestational stages. Lastly, we developed a method for quantifying eight BZDs in human breast milk and plasma using LC/MS/MS, and successfully applied it to quantify alprazolam in breast milk and plasma donated by a lactating woman.
T-type calcium channels are low-threshold voltage-gated calcium channel and characterized by unique electrophysiological properties such as fast inactivation and slow deactivation kinetics. All subtypes of T-type calcium channel (Cav3.1, 3.2 and 3.3) are widely expressed in the central nerve system, and they have an important role in homeostasis of sleep, pain response, and development of epilepsy. Recently, several reports suggest that T-type calcium channels may mediate neuronal plasticity in the mouse brain. We succeeded to develop T-type calcium channel enhancer ethyl 8′-methyl-2′,4-dioxo-2-(piperidin-1-yl)-2′H-spiro[cyclopentane-1,3′-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate (SAK3) which enhances Cav3.1 and 3.3 currents in each-channel expressed neuro2A cells. SAK3 can promote acetylcholine (ACh) release in the mouse hippocampus via enhancing T-type calcium channel. In this review, we have introduced the role of T-type calcium channel, especially Cav3.1 channel in the mouse hippocampus based on our previous data using SAK3 and Cav3.1 knockout mice.
In basic pharmaceutical sciences to achieve drug development, research on the efficient chemical synthesis of small molecules having cyclic skeletons is important. We have been engaged in the development of artificial catalysts for asymmetric ring formation reactions that exclusively synthesize right-handed or left-handed cyclic compounds and have achieved the construction of optically active cyclic skeletons using our original catalysts. The synthesis of biologically active compounds was facilitated through six-membered ring construction by Diels-Alder reaction of Danishefsky diene; however, no asymmetric variant of the reaction has been achieved. We approached this unresolved issue using multi-coordinated lanthanide metals. A new chiral lanthanide catalyst was developed, and the catalytic asymmetric Diels-Alder reaction of Danishefsky diene was realized for the first time. By modifying the chemical structure of Danishefsky diene, we applied the lanthanide catalyst to the syntheses of polycyclic compounds and biologically active compounds. We achieved the asymmetric synthesis of natural products, antibacterial and antimalarial compounds, and an anti-obesity drug lead compound. Moreover, the novel catalyst exhibited higher performance than the previously reported ones. The latest generation of the catalyst can be handled stably in air at room temperature. Furthermore, we succeeded in the development of new catalysts by focusing on the properties of its metal precursors, such as nickel and indium, and achieved the construction of polycyclic skeletons by using these catalysts.
This article describes our stereoselective and site-selective chemical methods for exploiting cationic heterocycles as electron-withdrawing groups (EWGs). We envisioned that the phosphoramide N-H proton of a pyridyl phosphoramide 3 would be activated by the cationic pyridinium moiety that is formed upon protonation. The resulting imide-like N-H proton and the acidic pyridinium proton of the pyridinium phosphoramide 3⋅HX cooperate together, making 3⋅HX a highly acidic dual Brønsted acid. The catalytic ability of 3⋅HX was demonstrated in the development of the first asymmetric Diels-Alder reaction between 1-amide dienes and maleimides. Focusing on the activation of N-bromosuccinimide (NBS) because of its structural similarity to maleimides, the enantioselective bromolactonization of trisubstituted olefinic acids was accomplished utilizing pyridyl phosphoramide 3f as a Brønsted base catalyst bearing an acidic N-H proton. Lastly, our strategy for the site-selective acylation of polyol compounds is described. In our system, a pyridine aldoxime ester 10, used as a mild acylating reagent, was activated by a catalytic amount of Lewis acid via the inductive effect of the cationic pyridinium moiety. The resulting metal complex preferentially attracted the alcohol with a Lewis basic site, thereby facilitating selective acylation via a template effect. This metal-template-driven strategy allowed for the site-selective acylation of diverse α-hydroxyamides, including unprotected N-glycolyl aminosugars.
The central nervous system (CNS) is segregated from the circulating blood and peripheral tissues by endothelial and epithelial barriers. To overcome refractory CNS diseases, it is important to understand the membrane transport systems of drugs and the endogenous compounds that relate to the pathogenesis of CNS diseases at these barriers. The endothelial barrier in the brain is the blood-brain barrier (BBB). Our studies clarified the efflux transport of prostaglandin E2 (PGE2), a modulator of neural excitation and inflammatory responses, across the BBB via plasma membrane transporters such as organic anion transporter 3 (Oat3) and multidrug resistance-associated protein 4 (Mrp4). This efflux transport was attenuated by peripheral inflammation or cerebral treatment with neuroexcitatory l-glutamate, suggesting that BBB-mediated PGE2 elimination was altered under several pathological conditions. We also examined excitatory amino acid transporter (EAAT) 1 and 3 as l-glutamate efflux transporters of the inner blood-retinal barrier (BRB) and blood-cerebrospinal barrier. It was considered that these efflux membrane transporters participated in the homeostasis of neuroexcitatory and neuroinflammatory responses in the brain and retina. Moreover, we identified connexin 43 (Cx43) hemichannels as a new membrane transport system that is activated under pathological conditions and recognizes several monocarboxylate drugs, such as valproate. As it is expected that the action of these membrane transporters across the CNS barriers is of great importance in understanding the pathology of various neuroexcitatory diseases, our studies should contribute to the establishment of therapeutic strategies for refractory CNS diseases.
Here the author describes the tumor-selective delivery of a fluorescence photosensitizing agent and an antitumor agent, based on the polymer effect of an N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymer, by utilizing the enhanced permeability and retention (EPR) effect seen in solid tumors. Firstly, the tumor distribution of the photosensitizer, zinc-protoporphyrin IX (ZnPP), was significantly increased by conjugation with the HPMA polymer (P-ZnPP). The P-ZnPP suppressed tumor growth by local generation of cytotoxic singlet oxygen, and the tumor tissue was visualized by fluorescence upon light irradiation. Subsequently, a two-step mechanism for tumor selectivity was observed for the cytotoxic anthracycline, pirarubicin (THP), which conjugated the HPMA-based copolymer via a hydrazone bond (P-THP). The EPR-dependent accumulation of P-THP and the tumor-selective release of THP in the tumor tissues led to highly tumor-selective toxicity. Rapid cell uptake of THP compared to other anthracyclines, and deeper P-THP penetration of the tumor cell spheroid were attributed to the superior antitumor activity of P-THP. The molecular weight of P-THP affected its antitumor activity; oligomeric P-THP derivatives with higher molecular weights, DP-THP and SP-THP, showed even higher antitumor activity. P-THP was effective for both implanted tumor and autochthonous tumor models. These results indicate that nano-sized anticancer drugs based on polymer effect are promising clinical therapeutics.
Natural materials such as crude drugs and foods are mixtures composed of various metabolites. Metabolic profiling is often used to identify possible correlations between a compound's metabolic profile and pharmacologic activity. Direct-injection electron ionization-mass spectrometry (DI-EI-MS) is a novel metabolomics method useful for characterizing biological materials. This review demonstrates the establishment of a DI-EI-MS method for metabolic profiling using several closely related lichen species: Cladonia krempelhuberi, C. gracilis, C. pseudogymnopoda, and C. ramulosa. The qualitative DI-EI-MS method was used to profile major and/or minor constituents in extracts of lichen samples. Each lichen sample could be distinguished by altering the DI-EI-MS electron energy and examining the resulting data using one-way analysis of variance. We also attempted to predict pharmacologic activity using DI-EI-MS metabolomics. Blueberry leaf extracts inhibited the proliferation of adult T-cell leukemia (ATL) cells. Blueberry leaf extracts could be distinguished by principal component analysis based on the absolute intensity of characteristic fragment ions. Twenty cultivars were categorized into four species, and the most appropriate discriminative marker m/z value for identifying each cultivar was selected statistically. Components extracted based on DI-EI-MS analyses could be used to construct a model to predict ATL cell bioactivity. These data suggest that the novel DI-EI-MS metabolomics method is suitable for identifying species of natural materials and predicting their pharmacologic activity. This approach could enhance public health by facilitating evaluations of pharmacologic activity and functionality, leading to the elimination of counterfeit products.
RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).
We previously reported that tolvaptan may influence warfarin pharmacodynamics in vivo; however, the mechanism responsible for this influence was not clear. In this study, we investigated the drug-drug interactions between warfarin and tolvaptan by measuring warfarin blood concentrations in 18 patients who received warfarin therapy and in 24 who received warfarin+tolvaptan therapy. The free warfarin concentrations significantly increased in patients who were also receiving oral tolvaptan (p=0.04). In vitro albumin-binding experiments showed that the free warfarin concentrations significantly increased with the addition of tolvaptan, in a dose-dependent manner, through albumin-binding substitution (approximately 2.5 times). Both clinical and in vitro data showed that tolvaptan increased the unbound warfarin serum concentration. The prothrombin time-international normalized ratio (PT-INR) tended to increase within 2 weeks when tolvaptan was added at clinically used doses (p=0.14). Special attention is warranted in cases with a serum tolvaptan concentration of ≥125 ng/mL (≥7.5 mg/d) for at least 2 weeks following oral tolvaptan administration.
The authors investigated the drug–drug interactions between warfarin and tolvaptan by measuring drug blood concentrations in clinical patients and conducting in vitro albumin-binding experiments. They indicated that tolvaptan causes the free warfarin concentration to increase within 2 weeks of starting the combined treatment and the mechanism was albumin-binding substitution. This study shows that investigating and demonstrating various phenomena from the bedside enable pharmacists to provide better pharmaceutical care for patients.
Care workers at care facilities play an important role in providing medication-administration assistance, and in medication risk management. Nevertheless, research has not made clear the specific concerns that care workers have at work sites, as well as the extent of their burdens. Thus, we conducted a questionnaire survey from October 1 through October 31, 2014 for staff who provide medication-administration assistance at for-pay elderly person homes about the concrete concerns and burdens with regards to the assistance. A total of 1677 respondents were analyzed: 228 nurses and 1449 care workers. Results showed that the care workers had a variety of problems and issues. These included the fact that, since care workers are not medical profession, they were unable to answer questions that the facility residents asked about their medications; they had concerns regarding their own lack of awareness of the efficacies of medications, and as to whether certain drugs were inappropriate for certain patients with swallowing dysfunctions; they wondered whether drugs in tablet forms had to be crushed before administration. They also encountered pharmacological-related issues, including whether administration times and numbers failed to match the lifestyle patterns of facility residents, and so forth. It is presumed that, with active intervention of pharmacists within facilities, these issues could be resolved. Study results, thus, suggested the need for system creation whereby pharmacists can become deeply involved in medication-administration assistance along with the care workers within facilities.
Health professionals should adopt best practices that are cognizant of the communication skills of their patients. Pharmacists should be knowledgeable about hearing disabilities to effectively provide medication education to deaf and hard-of-hearing (HH) patients. The Act for Eliminating Discrimination against Persons with Disabilities requires pharmacists to take the appropriate actions to their patients. However, awareness about the appropriate actions for eliminate discrimination has not increased among medical professionals. This survey examined the knowledge about hearing disabilities, practice of appropriate actions and confidence in medication education to deaf and HH patients on 216 pharmacists in Yahata Pharmaceutical Association in November 2019. Pharmacists had poor awareness about hearing disabilities and about 30% of participants misunderstood appropriate actions in communication to deaf and HH patients. Practice of appropriate action in medication education were taken by only about half of the participants. In particular, placing Ear symbol had not be taken at all. Participants felt that they could provide medication education sufficiently by written materials in spite of poor understanding about the literacy of deaf individuals. On the other hand, they felt unconfident due to lack of understanding about hearing disabilities and how to communicate with their patients. This survey suggests that pharmacists need to learn about hearing disabilities for effective communication and practice of appropriate action in medication education to patients with hearing disabilities. Learning hearing disabilities may enable them to take the actions that are necessary to eliminate discrimination and enhance their confidence in providing medication education.