詳細検索結果
以下の条件での結果を表示する:
全文: "倍音"
2,559件中 1-20の結果を表示しています
  • 前園 崇徳, 西村 勇也
    電気関係学会九州支部連合大会講演論文集
    2016年 2016 巻 07-1P-02
    発行日: 2016/09/21
    公開日: 2018/02/16
    会議録・要旨集 フリー
    これまでの楽器音響の研究では物理モデルや特性、音響特性、音色のタッチ感など様々な研究が行われてきた。本研究ではピアノの分野におけるハンマーヘッドについての研究を行う。ハンマーヘッドの硬度変化から生じる音響特性の変化を、周波数解析を行い倍音に着目して観測する。方法として、ハンマーヘッドのパターンを決定し調律師に調整を依頼し、ハンマーヘッドを取り替えながら自動演奏装置で演奏し収録・解析を行う。最後に硬度計測を行い、倍音変化と硬度変化の相関解析を試みる。結果として、高次倍音成分が低くなるという結果を得られたが、硬度計測には失敗した。今後は硬度計測方法を模索し、硬度と倍音変化の関係性を調査していく。
  • 猪本 修, 大村 優華
    日本科学教育学会研究会研究報告
    2020年 34 巻 10 号 5-10
    発行日: 2020/06/20
    公開日: 2020/06/17
    研究報告書・技術報告書 フリー

    音の物理的特性は大きさ,高さ,音色の三要素によって特徴づけられる.これらのうち音色は身近のさまざまな楽器や声などの個性や多様性に関わるものであり,音を学ぶ上で欠くことができない重要な要素である.しかしながら中学校理科,高校物理のいずれでも音色についてはほとんど学ぶ機会がないため,音色については分かりやすい教材と指導法が求められる.本研究では,高校物理の教育課程において音色を詳しく扱うにあたって,楽音を構成する倍音成分と波形の関係を述べ,それを効果的に演示するための実験的方法を示した.さらに音色と倍音の関係を調べる対象としてヒトの声に着目した.声の倍音構成を成人116名について調べたところ,第3倍音から第6倍音にかけて性差を反映する特徴が見いだされた.本研究により,音の主要な要素の一つである音色を教材化するには,身近な素材である声を対象とすることが効果的であり,音に対する理解をより豊かなものにできることが示された.

  • 伊藤 直樹, 前田 功弥, 浜田 健史, 西口 磯春, 徳弘 一路, 高澤 嘉光
    人間工学
    2005年 41 巻 Supplement 号 88-89
    発行日: 2005/06/11
    公開日: 2010/03/15
    ジャーナル フリー
  • 宮前 寛, 上ノ原 進吾, 西島 恵介, 古家 賢一
    電気関係学会九州支部連合大会講演論文集
    2015年 2015 巻 14-1P-07
    発行日: 2015/09/10
    公開日: 2018/02/16
    会議録・要旨集 フリー
    消音ギターは,通常のギターの共鳴ボディー部分を取り除いた楽器である.消音ギターの場合,演奏音はヘッドホンを装着して受聴し,ピックアップで拾った弦の振動を直接聴くことになるため,音の広がりのない無機質な音に聞こえ,本来のギターの音質とは異なる印象をうける.従来技術として,消音ギターの出力に対し,ギターの音響特性や部屋の響きを電気的に合成する方法が検討されているが,十分なギター音の再現ができていない。本稿では,通常のギターに装着したピックアップの振動からギターの放射音を再現する発音機構の非線形モデルを構築するため,弦のかわりに加振機による振動を与え,振動特性と放射音特性を測定し,分析を行った.
  • 山口 公典, 安藤 繁雄
    日本音響学会誌
    1977年 33 巻 6 号 291-300
    発行日: 1977/06/01
    公開日: 2017/06/02
    ジャーナル フリー
    Investigations of musical instrument tone are classified into three categories, (1) mechanical study of the musical instrument and generation of tone, (2) analysis of acoustical wave generated by musical instrument, and (3) study of the correlation between acoustical wave and human sense of hearing. In the first part, are reviewed briefly the results of the latest digital processing of musical instruments. Then, the physical features of musical instruments are reported for the first time which are derived from the author's short-time spectral analysis. In a previous paper, prior to the experimental analysis, mathematical considerations were made with regard to the analytical error when DFT was applied to the musical instrument tone. Here, a new analytical method with examples are presented with regard to the "inharmonicity" of musical instrument tone, which could not be dealt with by the method proposed earlier. Eleven kinds of musical instruments are used -violin, viola, cello, flute, clarinet, oboe, bassoon, trumpet, trombone, guitar and piano. To save the space, only representative notes of analytical results for these instruments are shown (Figs. 1〜14). In these figures, the ordinate shows the amplitude of each harmonics in a linear scale, and numerical figures and alphabet signs show each harmonics. The changes of fundamental frequency are shown by a percentage scale using P or %. It is an outstanding feature that string tones of violin, viola and cello have long attack transient time, in general. The amplitude of each harmonics presents complicated behavior in a pseudo-steady state and especially so in case vibrato is applied to violin and cello. It is also a characteristic feature that flute and clarinet show the attack transient as S-form. The attack transient time of the two instruments are relatively long of the order of 100 msec, while their decay times are of the order of 200 msec. The attack transient time of bassoon and oboe are very short of the order of 20 msec. The pitch variation of bassoon is very easily recognized. Change of pitch of -2% at the attack transient and that of +2% at the decay part are recognized, when the steady state part is regarded as 0% change. In case of oboe, the vibrato and the amplitude variation of each harmonics are regular in the steady state part, and the pitch variation is synchronized with the change of amplitude. When the instruments are normally played at a given dynamic marking, mf, the attack transient time of trumpet tone A_4 is very short, while that of trombone tone A_3 is considerably long. The attack transient time of piano and guitar are very short. And, the max. spectral density lies in the region of max. amplitude. With regard to decay, the low order harmonics show gradual exponential function, while the high order harmonics show more fast decay. As for the analysis of inharmonicity, in order to improve the resolving power of frequency, DFT analysis was applied to the sum of zero of three times that of data window and the waveform which is A/D converted at sampling frequency, in which the fundamental frequency of musical instrument tone is pitch synchronized with data window. Fig. 17 shows the peak value of each spectrum obtained by this method approximated by quadratic function, and accurate amplitude and frequency are calculated. The inharmonicity of grand piano tone can be calculated by the frequency of each harmonics obtained as stated above, and in the actual measurement, constant B is 0. 00008 at note A_2.
  • 塚田 健一
    東洋音楽研究
    1980年 1980 巻 45 号 170-127
    発行日: 1980/08/31
    公開日: 2010/02/25
    ジャーナル フリー
    It has been well-known that the wonderful triadic chorus is found in all the traditional songstyles in the Bunun tribe living in the central part of the Taiwanese mountains. This paper tries to explain the origin of the triadic chorus in nonliterate societies by examining their musical situations from various aspects.
    In 1952, T. Kurosawa presented his theory in this connection, in which he insisted that the Bunun's songstyles are derived from the harmonics of their musical bow and that the natural overtones made by this instrument lead up to the birth of the pentatonic scale. I have found, however, that this theory contains some problems, judging from the results of my analyses of their songstyles and my acoustic analyses of their musical bow performances.
    On the other hand, the jaw's harp, which they often enjoyed playing in the past, turns out to have a much closer connection with their songstyles, for example:
    1) The tone system of the Bunun tribe almost corresponds to a series of natural overtones which are used in their performances on the jaw's harp. (the 7, 8, 9, 10, 11, 12th overtones)
    2) The melodic style sung by their chorus i s much the same as the melodic style o f the music played on the jaw's harp.
    3) It is conceivable that the vocalizations, which are characteristic of their songstyles, resulted from the playing of the jaw's harp.
    4) There exists a special song which enables us to presume that their melodies were transferred from the music of the jaw's harp into their songstyles.
    These facts lead to the conclusion that the songstyles of the Bunun tribe were greatly influenced by and derived from their harmonic performances on the jaw's harp.
  • 小野木 君枝, 横山 博史, 飯田 明由, 有元 慶太
    流体工学部門講演会講演論文集
    2019年 2019 巻 OS5-13
    発行日: 2019年
    公開日: 2020/07/25
    会議録・要旨集 認証あり

    To clarify the effects of jet angle on the radiated sound from the flute, the radiated sound and jet fluctuations were experimentally investigated. An artificial blowing device with an artificial oral cavity was used to change the jet angle and the geometric edge offset (the relative height of edge from the jet oscillation center) independently. The actual jet offset was estimated based on the velocity profile measured by a hot-wire anemometer. Although the geometric edge offset was set to zero, the actual edge offset increased with the jet angle since the jet deflects toward inside the resonator. The radiated sound pressure of the first mode remained almost at the same level, while the sound of the second mode radiated more intensely with the increase of the jet angle in the range of 15 degrees from the measured angle for a human player. With the increase of the jet angle beyond this range, the sound of the third mode radiated less intensely. These results indicate that jet deflects toward inside the resonator influenced by the acoustic resonance and that the variation of the jet angle affects the actual jet offset, which affects the harmonic structure.

  • 倍音の有効性に着目した実証
    プロモーショナル・マーケティング研究
    2017年 10 巻 25-39
    発行日: 2017年
    公開日: 2019/06/03
    ジャーナル オープンアクセス
  • 高橋 智子
    立教女学院短期大学紀要
    2013年 45 巻 85-104
    発行日: 2013年
    公開日: 2017/09/15
    研究報告書・技術報告書 フリー
  • 山谷 弘美, 佐藤 太一
    IIP情報・知能・精密機器部門講演会講演論文集
    2011年 2011 巻 F-3-2
    発行日: 2011/03/18
    公開日: 2017/06/19
    会議録・要旨集 フリー
    The aim of this study is to develop coaching methods for playing a cello by use of sound information. For this purpose, we measured and analyzed the cello sounds both of beginner and professional firstly. As a result, we indicated that the difference of both sounds was form of harmonics. And, we evaluated the degree of difference of both sounds by correlation coefficients etc. Next, we measured both pushing force of string and acceleration of bow of the cello. The differences were recognized among beginner with professional in both force and acceleration. Based on a force-waveform of professional we made the acoustic information in an attempt to improve cello playing skill of beginner.
  • 颯田 琴次, 白岩 俊雄
    大日本耳鼻咽喉科會會報
    1938年 44 巻 12 号 2194-2195
    発行日: 1938年
    公開日: 2007/08/10
    ジャーナル フリー
  • 安藤 由典
    日本音響学会誌
    1970年 26 巻 7 号 297-305
    発行日: 1970/07/10
    公開日: 2017/06/02
    ジャーナル フリー
    Using a mechanical blowing apparatus, flute playing was simulated, and acoustical properties of generated tone were investigated. Five sorts of parameters were chosen for description of harmonic structure, and their variations with nine sorts of drive conditions, which were found in a previous work of the author (reported in the last issue of J. A. S. J. ), were measured on a typical instrument (H. Hammig). (Tab. 1). The parameters of harmonic structure (Fig. 1) were 1. The number of harmonics (N): The number of harmonics, of which relative levels are not less than -35dB as compared with the level of the fundamental. 2. Average level of harmonics (M_kdB): M_k=1/(k_1)��^^k__2L_i, where L_i is the relative level in dB of the i-th harmonics. In the low, middle and high registers, k=7, 5 and 3 respectively. 3. Attenuating degree of harmonics level with its order (ZdB/oct): This parameter is expressed by N and M as the following equation. Z=(M+35)log2/(log(N+2)-1/(k_1)log(k!)). 4. Level difference between even and odd harmonics (L_e-L_0): For low register tones, L_e-L_0=1/3(L_2+L_4+L_6)-1/3(L_3+L_5+L_7). For middle and high register tones, L_e-L_0=L_2-L_3. 5. Formant: The term is used in the same meaning as used in phonetic acoustics. The results obtained are as follows: In the low register, M_7 is proportional to the air beam velocity u. Its increasing rate as well as its value at equal velocity are in proportion to the pitch of the tone (Fig. 3, Equation 5. 3). In the middle or the high register, M_5 or M_3 depends on the pitch only (Fig. 4, Equation 5. 4). A fixed correlation was found between N and M_k regardless of drive conditions (Fig. 2, Equation 5. 1 and 5. 2). Therefore the attenuating degree Z is also constant in each of three registers, (15-16dB/oct in the low register, 13dB/oct and 8dB/oct in the middle and high register respectively). L_e-L_0 varies critically with air beam bias e in all three registers (Fig. 6). Anti-formant is observed in low register tones, when u is large(u≧9m/sec) and e is near the soundable limit (about -2. 0mm or 0mm) (Fig. 7). The probable ranges of M_k and L_e-L_0 in the actual flute playing were discussed, based on the above data and those derived in the previous work, and the resultant models of harmonic structure were shown (Fig. 8 and 9).
  • 佐藤 正之
    認知神経科学
    2005年 7 巻 1 号 40-43
    発行日: 2005年
    公開日: 2011/07/05
    ジャーナル フリー
  • 青木 弘行, 久保 光徳, 鈴木 邁, 後藤 忠俊, 下畦 聡司
    デザイン学研究
    1992年 1992 巻 91 号 37-44
    発行日: 1992/05/01
    公開日: 2017/07/25
    ジャーナル フリー
    様々な事象において,適切な認知を与える信号音の開発を目的として,音に対する人間の感覚特性とその音の物理特性との相関関係を検討した。実験は,音色を決定するスペクトル分布を直接操作することにより評価標本としての信号音を合成し,これらの信号音に対する官能評価実験を行い,主成分分析・双対尺度法を用いて,信号音の音色イメージや終了音,警告音,呼出音としての用途別適性を考察,検討した。一方,数量化理論I類を用いて,信号音の音色イメージや用途別適性と音の物理特性および音のスペクトル分布操作によるイメージへの影響を示す操作特性との相関関係の解明を試みた。その結果,各周波数に対応したパワースペクトルの相対的な大小関係や倍音構成などが,音に対する透明感,重厚感そしてこれらの感覚に起因する快適感を有効に操作する要因であることが明らかとなり,この操作法に従って,よりふさわしい終了音,警告音,呼出音,呼出音の提案を行った。
  • 寺田 己保子
    学校音楽教育研究
    2015年 19 巻 250-251
    発行日: 2015/03/31
    公開日: 2017/04/24
    ジャーナル フリー
  • 板垣 達也, 松本 哲也, 竹内 義則, 工藤 博章, 大西 昇
    映像情報メディア学会年次大会講演予稿集
    2011年 2011 巻 8-3
    発行日: 2011/08/24
    公開日: 2017/05/24
    会議録・要旨集 フリー
    We propose a system for recognizing horn and siren sounds. We calculate the degree of harmonic structure from the amplitude spectrum and search its peaks. The peak frequency corresponds to the fundamental frequency of warning sounds. The experimental results show the method can detect warning sounds in SNR of 0dB.
  • 亀岡 秋男, 厨川 守
    日本音響学会誌
    1967年 23 巻 2 号 70-79
    発行日: 1967/03/30
    公開日: 2017/06/02
    ジャーナル フリー
    Subjective harmaonics are generally interpreted to be caused by the nonlinearity of ears, and seem to have great effects on timbre or tone quality. Wegel and Lane assumed that the intensity of a subjective harmonic could be known by introducing a mistund tone of a slightly different frequency and determing the intensity giving the most pronounced beat sensation. Although this so-called 'Best Beat Method' has been adopted for measuring the intensity of subjective harmonics by many researchers^&lt1), 3), 5), 6)&gt, some objections have been raised against the above-mentioned interpretation^&lt3), 10)&gt. In this paper a P. S. E. Tracing Method developed by the authors is introduced, and the results of experiments are discussed on the sound pressure level and phase of subjective harmonics, monaural phase effect on timble, the phase rule, and a subjective pure tone synthesis. Both soud pressure level and phase of subjective harmonics were measured simultaneously, by adopting the P. S. E. Tracing Method based on successive pair comparisons. This method is characterized by exploring tones consisting of two reciprocal assisiting tones A_&ltnB&gt(Basic phase) and A_&ltnR&gt(Rsversed phase), and a mistuned the M_n. The frequency of assisting tones is the same as that of the subjective harmonic, while the frequency of M_n is slighily different. The mistuned tone is merely introduced to make beats, which intensify observer's sensitivity in adjusting P. S. E. Theoretical considerations are carried out in Fig. 1 under the assumption that the vector addition law holds good in adding external harmonics (assisting tones) to the subjective harmonics. Fig. 2 gives a block diagram of the equipment. A_&ltnB&gt and A_&ltnR&gt are alternately transferred by an electronic switch with a time sequence shown in Fig. 3. The results of experiments are tabulated in tables 2 and 3. Experimental vector loci obtained by this method are shown in Fig. 4, 5 and 6. The agreement of the experimental loci with ones determined theoretically is satisfactory, showing the appropriateness of the assumption. In Fig. 7. comparisons between the results by the Best Beat Method and by the P. S. E. Tracing Method are depicted. The conclusions reached are as follows: (1) The subjective harmonics measured by the new method were approximately 20 dB lower than those by the Best Beat Method. The second subjective harmonic of a fundamental (440 cps. 80 dB SPL), for example, was 46 dB SPL eqe. with a sine phase angle of 262°, while it was 63 dB SPL according to Fletcher. (2) The vector addition law holds good in adding external harmonics to subjective harmonics. (3) The M. P. E. (Monaural Phase Effect) depends largely on subjective harmonics. (4) By adjusting the intensity and phase of external harmonics, observers can hear subjective pure tones. (5) The above-mentioned suggest a hypothesis that the M. P. E. shows itself eventually in the form of a change in amplitude of harmonics due to interactions with subjective harmonics. The phase rule seems to be less reliable with nonlinear actual ears.
  • 有光 哲彦, 相澤 快, 花輪 和人, 戸井 武司
    自動車技術会論文集
    2014年 45 巻 1 号 115-120
    発行日: 2014年
    公開日: 2018/01/25
    ジャーナル フリー
    快音を代表する楽器音の類似性を考慮した自動車加速音のサウンドデザインについて提案する.一般の人と楽器の演奏者によりアンケートに基づく主観評価および生体情報に基づく客観評価を実施し,自動車加速音と楽器音の類似性を把握し,さらに加速音の回転次数成分と楽器音の倍音成分の類似特徴量の検出手段を検討する.
  • 濱村 真理子, 井上 さやか, 岩宮 眞一郎
    日本音響学会誌
    2015年 71 巻 9 号 455-458
    発行日: 2015/09/01
    公開日: 2017/06/02
    ジャーナル フリー
  • 柳沢 猛, 中村 喜十郎
    精密機械
    1963年 29 巻 343 号 595-598
    発行日: 1963/08/05
    公開日: 2009/06/30
    ジャーナル フリー
    The musical interval of a well tempered piano does not agree with the standard instrument scale, specifically, the pitch of the lowest key is about 35 cent lower and of the highest key is also about 35 cent higher than that of the standard scale. Consequently the tuning curve of a piano is S-shaped.
    This paper deals with the cause of the S-shaped bent of the tuning curve of a piano. Some industrial applications of our results to tuning of pianoes are also discussed.
feedback
Top