Since typical interior materials have high-emissivity surface of about 0.9, far-infrared generated from radiant heater is absorbed once in interior walls and then reradiated infrared from the warmed walls reaches human body surfaces. In the case of low-emissivity (low-E) interior surface of about 0.1, generated far-infrared is reflected at interior wall surface and reaches human body surfaces without warming processes of walls. Thus, it is expected that human body feels warmth quickly and/or heating load can reduce owing to the decrease in set temperature by forming the room covered with low-E materials. Therefore, we studied effects of the low-E interior surface material on interior thermal environment using radiant heating by comparing two real-size experimental rooms with the same thermal insulation: one is covered with a low-E material, aluminum foil (Low-E room), and the other is covered with a normal interior material (Std-E room).
When warm up the rooms using electrically heated carpet as radiant heating equipment, the globe and air temperatures of the Low-E room increased rapidly and showed about 0.8℃ higher temperatures than those of Std-room in 30 min. The radiant temperatures of the wall and ceiling of Low-E room increased immediately with the increase in the temperature of the carpet by turning on, while slow increase in those of Std-E room. Thus, the increase in globe and in air temperatures of the Low-E room may be because the whole Low-E surface, except for floor, of the room become pseudo radiant heating surface.
In this study we used aluminum foil as low-E materials. However, this material is not suitable for interior due to high specular reflection. Therefore, novel materials with low specular reflection in the visible range and low emissivity in the far -infrared range are also developing at present.
抄録全体を表示