詳細検索結果
以下の条件での結果を表示する:
全文: "Subparietal sulcus"
5件中 1-5の結果を表示しています
  • 菊池 吉晃
    東京保健科学学会誌
    1999年 1 巻 2 号 254-258
    発行日: 1999/03/20
    公開日: 2017/10/27
    ジャーナル フリー
    聴覚odd-ball課題遂行時の脳内活動源について, 全頭型脳磁界計測システムを用いて, 数msecの高時間分解能でマルチダイポール推定を行った。その結果, 頭頂葉, 上側頭溝, 前頭葉, 辺縁系などでの神経活動が推定されたが, 特に海馬傍回後部において, 他に比較して安定かつ顕著な神経活動が推定された。この結果から, 聴覚弁別処理時においては, 海馬傍回後部を中心として, 海馬と双方向性に神経結合のある皮質領域の活動が並行することが, 正常人の脳において観測された。
  • Hao Chen, Su Chen, Lidan Zeng, Lin Zhou, Shengtao Hou
    BioScience Trends
    2014年 8 巻 5 号 286-289
    発行日: 2014/10/31
    公開日: 2014/11/08
    ジャーナル フリー
    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain.
  • 前島 伸一郎, 大沢 愛子
    神経心理学
    2017年 33 巻 4 号 222-228
    発行日: 2017/12/25
    公開日: 2018/01/11
    ジャーナル フリー

    大脳内側面や底部(眼窩部)の障害を理解するために,その構造・機能とネットワークについて,臨床医の立場から概説した.その中でも,特に臨床的に重要と思われる,上前頭回や帯状回,楔前部,眼窩面などに関して解説を加えた.これらの部位は,その領域内で局在的に重要な役割を担っていること多いが,線維連絡による他の部位とのネットワークの形成によって,より多くの行動や情動,認知機能とも関連している.これらの解剖的関連を知っておくことは,臨床においても研究においても極めて重要なことである.

  • 竹岡 明日香, 杉下 守弘
    認知神経科学
    2001年 3 巻 1 号 54-56
    発行日: 2001年
    公開日: 2011/07/05
    ジャーナル フリー
  • 有国 富夫
    Equilibrium Research
    2003年 62 巻 4 号 284-301
    発行日: 2003年
    公開日: 2009/06/05
    ジャーナル フリー
    Recently, many functional areas have been identified in the parietal cortex of the brain in monkeys, and owing to this, cytoarchitectonic subdivision has been elaborated in the monkey parietal cortex. This review deals with sulcal patterns of the parietal lobe in human and monkey brains, and corticocortical connections of both neurophysiologi-cally defined regions and cytoarchitectonic areas of the parietal cortex in monkeys. The author proposes that the transverse occipital sulcus is a boundary between the parietal and occipital cortices in the human brain. A brain map of the monkey is presented. The parietal cortical areas are subdivided into somatosensory, eye movement related, hand or upper limb movement related, vestibular, and auditory areas, according to neu-rophysiologically defined functions of individual cortical areas. The somatosensory system contains areas 3a, 3b, 1, 2, 5, 7b, and SII: S1 projects to motor and premotor areas and somatosensory association areas project to premotor areas, the prefrontal, temporal, and limbic cortices, and the hippocampus. The eye movement system is composed of areas 7a, LIP, and PIP: It receives input from visual and temporal cortices and sends output to premotor areas, the prefrontal cortex, and the hippocampus. Hand movements are mediated in areas AIP, VIP, CIP, MIP, PEc, and V6A: These areas receive afferents from somatosensory areas, visual and temporal cortices and send efferents to the ventral premotor area. The vestibular functions are executed by coordination of areas 3aNV, 3aHV, 2NV, Ri, and VPS: These areas reciprocate with the cingulate cortex and insula and project to the ventral premotor area, SWA, and frontal eye field. The auditory system involves areas VIP and LIP: It receives afferents from the superior temporal sulcal cortex and sends efferents to the premotor area, frontal eye field, and prefrontal cortex.
feedback
Top