ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Modeling of Solid Particle Flow in Blast Furnace Considering Actual Operation by Large-scale Discrete Element Method
Hiroshi MioKo YamamotoAtsuko ShimosakaYoshiyuki ShirakawaJusuke Hidaka
Author information
JOURNAL FREE ACCESS

2007 Volume 47 Issue 12 Pages 1745-1752

Details
Abstract

The objective of this paper is to analyze the solid particle flow in a blast furnace having bell-type charging system by using large-scale Discrete Element Method (DEM). About 500000 particles were calculated in this work. The particle discharging behavior of laboratory-scale blast furnace was compared to confirm the material properties used in the simulation work, and the simulated trajectories of tracer particle correlated with those of experimental very well. The melting behavior of iron ore and combustion of coke in the actual blast furnace were modeled by shrinking particles. The simplified bell-type charging system in this simulation mimicked the actual blast furnace, the collapse of coke layer at the top was observed, and the time change of stock level was quite similar. The particle pulsating flow was observed at the upper area of blast furnace, and the descending velocity near side wall was much larger than that of center in this calculation. The melting position of ore was mapped and the most of iron ore were melting above the raceway. This area should be cohesive zone. This modeling is the first step of the analysis of blast furnace by using Discrete Element Method. Although only contact force was considered and simplified melting zone or raceway were introduced, this large-scale simulation has a high potential to analyze the solid flow in the blast furnace, and the abnormal phenomena or serious problem in blast furnace operation will be analyzed in the future by considering gas flow or heat transfer.

Content from these authors
© 2007 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top