ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method
Zhengyun FanSatoru IgarashiShungo NatsuiShigeru UedaTianjun YangRyo InoueTatsuro Ariyama
Author information
JOURNAL FREE ACCESS

2010 Volume 50 Issue 10 Pages 1406-1412

Details
Abstract

Since the enlargement of blast furnace inner volume is generally carried out two dimensionally, the diameter of the throat, bosh and hearth increase with the inner volume, while the height is kept approximately constant. Due to these changes, blast furnace enlargement influences burden descending behavior and stress distribution in the furnace. The present investigation intends to elucidate the influence of the inner volume of the blast furnace on the solid flow and stress distribution through a three-dimensional analysis by the discrete element method (DEM). Firstly, the enlargement of blast furnace volume increases the deadman volume in the lower part of the blast furnace in accordance with the previous study. As a result of this change in the deadman volume, the solid motion in the lower furnace is influenced by the enlargement of blast furnace inner volume. In large blast furnaces, the stress between particles near the wall at bosh level is suppressed due to the active particle movement between the wall and the deadman, and at the same time, the particles in these regions tend to cause slipping. The profile of the blast furnace, such as the bosh and shaft angle, has little influence on these phenomena. Totally, the blast furnace inner volume has an effect on the stability of solid movement through the enlarged deadman.

Content from these authors
© 2010 by The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top