ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Effect of Tensile Strength and Microstructure on Notch-fatigue Properties of Ultrafine-grained Steels
Shiro TorizukaMatthias KuntzYoshiyuki FuruyaManfred Bacher-Hoechst
Author information
JOURNAL OPEN ACCESS

2012 Volume 52 Issue 5 Pages 910-914

Details
Abstract
Fatigue strength is one of the key properties in the practical use of ultrafine grained steels. Fatigue tests were conducted on notched specimens by conventional electromagnetic resonance fatigue testing machines. The electromagnetic resonance fatigue testing was carried out at 150 Hz up to 107 cycles. The investigated steels had different levels of carbon, 0.15 wt%, 0.30 wt% and 0.60 wt% with tensile strengths of 850 MPa, 950 MPa and 1105 MPa, respectively. With increasing in carbon content, the tensile strength increased and the total elongation decreased. The notched specimens never showed internal fracture and showed a clear fatigue limit. The notch fatigue limit increased with an increase in tensile strength from 850 MPa to 970 MPa, when the carbon content was 0.15 and 0.30 wt% with microstructures consisting of ultrafine ferrite grains and cementite particles. On the other hand, when the carbon content was 0.60 wt%, the notch fatigue limit decreased, though tensile strength increased to 1105 MPa. Retained pearlite grains were observed in 0.60 wt%C steel in addition to ultrafine ferrite grains and cementite particles. These retained pearlite grains which were coarse and high angle grain boundary poor regions were attributed to the lower notch fatigue limit.
Content from these authors
© 2012 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top