Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
Preliminary Study of the Effect of Micro-Scale Dimple Size on Friction and Wear under Oil-Lubricated Sliding Contact
Auezhan AmanovYoung Sik PyunBin ZhangJeong Hyeon ParkJiri Nohava
Author information
JOURNAL FREE ACCESS

2011 Volume 6 Issue 7 Pages 284-290

Details
Abstract
One of the conclusively presumed effects of micro-scale dimples under oil-lubricated conditions is that can serve as oil reservoirs and play a role in promoting the retention of a lubricating film. Ultrasonic nanocrystal surface modification (UNSM) technology is an emerging effective method for producing micro-scale dimples on a workpiece surface and improving the tribological performance of lubricated friction units. The main object of this research is to understand the effect of micro-scale dimple size on tribological characteristics under oil-lubricated sliding contacts. The current study investigated the effect of micro-scale dimple size on friction and wear reduction through micro-scale dimples. The tribological characteristics of silicon nitride ceramic (Si3N4) ball and S45C carbon steel disk combination in a defined ball-on-disk configuration were determined. It was recognized that friction property has a connection with the size of micro-scale dimple. Overall micro-scale dimpled disk specimens showed better tribological properties in terms of reduced friction coefficient and wear volume loss comparing to the polished specimen.
Content from these authors
© 2011 by Japanese Society of Tribologists
Previous article Next article
feedback
Top