The Journal of the Geological Society of Japan
Online ISSN : 1349-9963
Print ISSN : 0016-7630
ISSN-L : 0016-7630
Review
Petrologic characteristics of the upper mantle beneath island arcs
Shoji AraiSatoko Ishimaru
Author information
JOURNAL FREE ACCESS

2018 Volume 124 Issue 8 Pages 551-573

Details
Abstract

The mantle wedge is an important locus for material recycling, magma generation, and fluid transportation from the slab, and should therefore be thoroughly examined to better understand these processes. Peridotite xenoliths transported to the surface by arc magmas, or by other magmas, may be representative of the upper part (lithosphere) of the mantle wedge. Fore-arc peridotites exposed on the seafloor also represent the uppermost part of the mantle wedge. We summarize their modal composition, mineral chemistry, equilibrium temperature, and redox state, and discuss the implications for mantle-wedge processes. The arc peridotites are thought to derive mainly from the spinel to plagioclase-peridotite stability fields. They are varied in character, depending on their history as well as the tectonic setting (e.g., fore-arc, volcanic front, and back-arc) of their source regions. Some arc peridotites, especially those from the fore-arc to the volcanic front, are harzburgites and contain high-Mg olivine and high-Cr spinel, with high degrees of partial melting. They also show metasomatism, silica enrichment (i.e., formation of secondary orthopyroxene at the expense of olivine), and hydration (i.e., precipitation of Ca-amphiboles and/or phlogopites). The presence of tremolite, which is indicative of low temperatures and/or depleted (Al-poor) chemistry, is characteristic of sub-arc mantle peridotites. The equilibrium temperature is relatively low (<1100℃) with the exception of the Noyamadake peridotites, SW Japan arc, which are characterized by high temperatures (~1200℃). Some peridotites from the Western Pacific show high oxygen fugacities relative to abyssal peridotite (although a few peridotites show relatively low oxygen fugacities or contain secondary veins composed of highly reduced minerals such as metals and alloys). This indicates the importance of local reducing agents in the mantle wedge.

Content from these authors
© 2018 by The Geological Society of Japan
Previous article Next article
feedback
Top