IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Electronic Materials and Devices>
Experimental and Numerical Investigation of Contact Doping Effects in Dinaphthothienothiophene Thin-Film Transistors
Ryo YamamotoKei NodaYasuo WadaToru Toyabe
Author information
JOURNAL FREE ACCESS

2017 Volume 137 Issue 1 Pages 20-25

Details
Abstract

Contact doping effects in p-channel dinaphthothienothiophene (DNTT) thin-film transistors with a bottom-gate, top-contact configuration were investigated with both experimental and numerical approach. Characteristic variation in transistor parameters such as the gate threshold voltage and the field-effect mobility for devices with various channel lengths was suppressed by the contact doping with tetrafluorotetracyanoquinodimethane (F4TCNQ) as an acceptor dopant. The gate-voltage dependence of contact resistance and channel resistance was also evaluated separately to examine the contact doping effect in detail. In addition, device simulation considering a Schottky barrier at a metal/semiconductor interface successfully reproduced the experimental current-voltage characteristics by using a hole concentration of the active DNTT layer in the order of 1017cm-3, which was estimated by capacitance-voltage measurement for a metal/insulator/semiconductor capacitor structure. This study suggests the importance of establishing both the carrier doping and carrier concentration measurements toward realizing practical applications of organic transistors.

Content from these authors
© 2017 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top