Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Comparative Study of Relation Classification Approaches for Japanese Discourse Relation Analysis
Keigo TakahashiTeruaki OkaMamoru KomachiYasufumi Takama
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 2 Pages 239-254

Details
Abstract

This paper presents a comparative analysis of classification approaches in the Japanese discourse relation analysis (DRA) task. In the Japanese DRA task, it is difficult to resolve implicit relations where explicit discourse phrases do not appear. To understand implicit relations further, we compared the four approaches by incorporating a special token to encode the relations of the given discourses. Our four approaches included inserting a special token at the beginning of a sentence, end of a sentence, conjunctive position, and random position to classify the relation between the two discourses into one of the following categories: CAUSE/REASON, CONCESSION, CONDITION, PURPOSE, GROUND, CONTRAST, and NONE. Our experimental results revealed that special tokens are available to encode the relations of given discourses more effectively than pooling-based approaches. In particular, the random insertion of a special token outperforms other approaches, including pooling-based approaches, in the most numerous CAUSE/REASON category in implicit relations and categories with few instances. Moreover, we classified the errors in the relation analysis into three categories: confounded phrases, ambiguous relations, and requiring world knowledge for further improvements.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top