Journal of the Japan Institute of Energy
Online ISSN : 1882-6121
Print ISSN : 0916-8753
ISSN-L : 0916-8753
Special articles: JCREN II (Original Paper)
Consecutive Reaction Model of the Pyrolysis of Polystyrene, Polyethylene and Polypropylene under an Isothermal Condition
Glen Khew Mun LOONGNaoto MORISHIGEKeito YAMAJIKen-ichiro TANOUE
Author information
JOURNAL FREE ACCESS

2022 Volume 101 Issue 8 Pages 162-170

Details
Abstract

Based on past studies, many reaction models have been used to replicate the thermal degradation of plastic polymers. In this work, we analyse the change in yield using two types of reaction model, the first-order reaction model and the two-step consecutive reaction model of three plastic samples under an isothermal heating condition. This is due to the difficulty of using conventional method such as KAS, FWO or Coats-Redfern method which requires a heating rate. It is found that the first-order reaction model is more suited to replicating the yield curve under a low temperature while the consecutive reaction is more suitable under a high temperature. For example, using the first-order reaction model, we were able to replicate the yield curve of polystyrene, polyethylene and polypropylene under the temperature 593 K ≤ TS < 623 K,643 K ≤ TS < 693 K and 623 K ≤ TS < 653 K respectively while anything higher than that can only be replicated using the two-step consecutive reaction model. The apparent activation energy in this study has to be separated using three different reaction rate K1, K2 and K3 which shows a range of 106 ~ 396 kJ/mol.

Content from these authors
© 2022 The Japan Institute of Energy
Previous article
feedback
Top