Published: 1990 Received: September 21, 1989Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29 (1978), 178-218. 2) V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 32 (1985), 254-258. 3) V. G. Drinfeld, Quantum groups, Proc. ICM, Berkeley 1986, pp. 798-820. 4) M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63-69. 5) V. G. Kac, Infinite dimensional Lie algebras, Progr. Math., 44, Birkhäuser, Boston-Basel-Stuttgart, 1983. 6) G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. 7) M. Rosso, An analogue of PBW theorem and the universal R-matrix for Uhsl(N+1), Comm. Math. Phys., 124 (1989), 307-318. 8) T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, preprint. 9) H. Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type AN, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25 (1989), 503-520. 10) G. Lusztig, Finite dimensional Hopf algebras arising from quantum groups, J. Amer. Math. Soc., 3(1990), 257-296. 11) G. Lusztig, Quantum groups at roots of 1, preprint.
Right : [1] G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29 (1978), 178-218. [2] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 32 (1985), 254-258. [3] V. G. Drinfeld, Quantum groups, Proc. ICM, Berkeley 1986, pp. 798-820. [4] M. Jimbo, A q-difference analogue of U (g) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63-69. [5] V. G. Kac, Infinite dimensional Lie algebras, Progr. Math., 44, Birkhäuser, Boston-Basel-Stuttgart, 1983. [6] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. [7] M. Rosso, An analogue of PBW theorem and the universal R-matrix for Uhsl (N+1), Comm. Math. Phys., 124 (1989), 307-318. [8] T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, preprint. [9] H. Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type AN, Publ. Res. Inst. Math. Sci. Kyoto Univ., 25 (1989), 503-520. [10] G. Lusztig, Finite dimensional Hopf algebras arising from quantum groups, J. Amer. Math. Soc., 3 (1990), 257-296. [11] G. Lusztig, Quantum groups at roots of 1, preprint.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -