Abstract
On-chip concentration is a method of concentrating biomolecules using a nanometer-sized structure created into a microchannel, which is effective for improving detection sensitivity for microfluidic devices. As an on -chip concentration method for DNA molecules, we proposed a concentration method using nanoslit, which was a gap smaller than a diameter of a single molecule. Since this concentration method was based on the principle of entropy trap, its concentration amount depended on applied voltage. In this study, we proposed a theoretical model of concentration using nanoslit and determined an optimal voltage at which maximizing the concentration amount. We fabricated a chip device with 25 nm-depth nanoslit using microfabrication technique and experimentally verified the validity of our model. We achieved the concentration of λ DNA molecules at 17 times when we applied 0.6 V for 15 s.