QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
Online ISSN : 2434-8252
Print ISSN : 0288-4771
Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds.
Hironori OKAUCHIKazuyoshi SAIDAKazutoshi NISHIMOTO
Author information
JOURNAL FREE ACCESS

2011 Volume 29 Issue 4 Pages 346-352

Details
Abstract

Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) <0.21(on alloy 132 weld metal), <0.10(on type 316L stainless steel). Solidification/liquation cracks occurred in that of La/(P+S) >0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal.

Content from these authors
© 2011 by JAPAN WELDING SOCIETY
Previous article Next article
feedback
Top