JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
Online ISSN : 1347-538X
Print ISSN : 1344-7653
ISSN-L : 1344-7653
PAPERS
Model-Following Controller Based on Neural Network for Variable Displacement Pump
Ming-Hui CHUYuan KANGYih-Fong CHANGYuan-Liang LIUChuan-Wei CHANG
Author information
JOURNAL FREE ACCESS

2003 Volume 46 Issue 1 Pages 176-187

Details
Abstract
The variable displacement axial piston pump (VDAPP) is inherently nonlinear, time variant and subjected to load disturbance. The controls of flow and pressure of VDAPP are achieved by changing the swashplate angle. The swashplate actuators are controlled by an electro-hydraulic proportional valve (EHPV). It is reasonable for swashplate angle of a VDAPP to employ neural network based on adaptive control. In this study, the nonlinear model of the VDAPP with a three-way electro-hydraulic proportional valve is proposed, and a neural network model-following controller is designed to control the swashplate swivel angle. The time response for the swashplate angle is analyzed by simulation and experiment, and a favorable model-following characteristic is achieved. The proposed neural controller can conduct nonlinear control in VDAPP, enhance adaptability and robustness, and improve the performance of the control system.
Content from these authors
© 2003 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top