Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Full Papers
Electrophysiological Characterization of Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells
Masaki HondaJumpei KiyokawaMitsuyasu TaboTomoaki Inoue
Author information
JOURNAL FREE ACCESS

2011 Volume 117 Issue 3 Pages 149-159

Details
Abstract

Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) hold great promise for development of in vitro research tools to assess cardiotoxicity, including QT prolongation. In the present study, we aimed to clarify the electrophysiological/pharmacological characteristics of hiPS-CMs using the patch-clamp technique. The hiPS cells were differentiated into beating cardiomyocytes by the embryoid body method. The expression of genes related to cardiac ion channels and differentiation markers in cardiomyocytes were detected by RT-PCR. Whole-cell patch-clamp recordings were performed using single hiPS-CMs dispersed from beating colonies. We confirmed voltage-dependence of major cardiac ion currents (INa, ICa, IKr, and IKs) and pharmacological responses to ion-channel blockers. Action potential duration (APD) was prolonged by both IKr/hERG and IKs blockers, whereas it was shortened by an ICa blocker, indicating that these ion current components contribute to action potential generation in hiPS-CMs. As for multiple ion channel blockers, terfenadine prolonged APD, but verapamil did not, results which were identical to clinically relevant pharmacological responses. These data suggest that patch-clamp assay using hiPS-CMs could be an accurate method of predicting the human cardiac responses to drug candidates. This study would be helpful in establishing an electrophysiological assay to assess the risk of drug-induced arrhythmia using hiPS-CMs.

Content from these authors
© The Japanese Pharmacological Society 2011
Previous article Next article
feedback
Top