2022 Volume 27 Issue 2 Pages 41-52
In vitro culture mimicking the liver fibrosis is important not only for investigating its mechanisms, but also for reducing experimental animals. Hepatic stellate cells (HSCs) play a major role in liver fibrosis. HSCs are quiescent in a normal liver and differentiate into activated myofibroblasts in a damaged liver. HSCs are rapidly activated on culture plates, making it difficult to evaluate the fibrosis response over time. Spheroids of HSCs cultured on a porous membrane showed in vivo like deactivation. Therefore, this study aimed to develop a culture system for liver fibrosis evaluation that mimics the in vivo fibrosis mechanism using HSC spheroids. Here, we investigated a culture method that demonstrates the transition of HSCs to fibrosis using uniformly formed HSC spheroids. HSC spheroids were cultured on plastic plates, during which the cells changed to a fibrous state and showed increased expression of activation marker genes, indicating a transition to an activated phenotype. During fibrosis transition, fibrosis is induced by transforming growth factor-β and inhibited by a yes-associated protein inhibitor; thus, the in vitro culture method can reproduce the fibrosis mechanism. Finally, the gene expression of integrin β1 increased, which was related to the adhesion and activation mechanisms in spheroids.