Advanced Biomedical Engineering
Online ISSN : 2187-5219
ISSN-L : 2187-5219
Extraction of the Information Component of the Autodyne Signal in Pulsed-periodic CO2 Lasers for Doppler Diagnostics of the Surgical Process
Alexey KonovalovValerii Ulyanov
Author information
JOURNAL OPEN ACCESS

2021 Volume 10 Pages 129-137

Details
Abstract

The creation of laser surgical systems with feedback, which allows performance of high-precision low-trauma operations, is the current trend of modern surgery. CO2 lasers with pulse-periodic pumping which generate radiation at a wavelength of 10.6 µm and modulated at a frequency of 5–20 kHz are widely used in medical practice. This paper reports the possibility of creating feedback based on the autodyne effect that occurs in such surgical CO2 lasers during laser dissection/evaporation of biotissues. The algorithm for extracting the information component (Doppler signal) of the autodyne signal for such CO2 lasers has been developed. We showed that application of this algorithm permits extraction of the Doppler component spectrum in the autodyne signal that occurs when dissecting biotissues. Doppler signals were obtained when dissecting pig tissues in vitro, with a signal-to-noise ratio in the range of 5–15. The results obtained can be used in the development of smart laser surgical systems with feedback.

Content from these authors
© 2021 Japanese Society for Medical and Biological Engineering

Copyright: ©2021 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Previous article Next article
feedback
Top