Archives of Histology and Cytology
Online ISSN : 1349-1717
Print ISSN : 0914-9465
ISSN-L : 0914-9465
Original articles
Distribution of actin filaments, non-muscle myosin, M-Ras, and extracellular signal-regulated kinase (ERK) in osteoclasts after calcitonin administration
Hiroaki NakamuraNoriyuki NagaokaAzumi HirataMiho InoueHidehiro OzawaToshio Yamamoto
Author information
JOURNAL FREE ACCESS

2005 Volume 68 Issue 2 Pages 143-150

Details
Abstract

Scanning electron microscopy (SEM) was employed to study the effect of calcitonin on the distribution of actin filaments in osteoclasts obtained from rat tibiae. Fluorescent microscopy was also applied to examine calcitonin-induced changes in the distribution of actin filaments, non-muscle myosin, M-Ras, and extracellular signal-regulated kinase (ERK) to clarify the role of ERK in the cytoskeleton of osteoclasts. SEM of control osteoclasts revealed a ring-like structure in the peripheral region. Labeled actin filaments and non-muscle myosin were detected in the peripheral region and exhibited a ring-like pattern. Immunoreactivity indicating M-Ras and ERK was also detected in the vicinity of the actin ring. After calcitonin treatment, many osteoclasts exhibited a retracted appearance and lacked a discernible actin ring. Numerous retraction fibers were found at the edge of calcitonin-treated osteoclasts. Actin filaments and non-muscle myosin were concentrated in the cytoplasm of calcitonin-treated osteoclasts, and exhibited a filamentous pattern. Labeled M-Ras and ERK also accumulated in the central region of these osteoclasts. These findings suggest that actin-myosin interaction plays an essential role in the retraction of osteoclasts induced by calcitonin. ERK may play a role in this interaction by activating myosin light chain kinase, as previously observed in smooth muscle cells.

Content from these authors
© 2005 by International Society of Histology and Cytology
Previous article
feedback
Top