Asian Pacific Confederation of Chemical Engineering congress program and abstracts
Asian Pacific Confederation of Chemical Engineers congress program and abstracts
Session ID : 3J-11
Conference information

A Peptidyl Linker for Protein Cross-Linking Catalyzed by Microbial Transglutaminase
Tsutomu TanakaNoriho KamiyaTeruyuki Nagamune
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract
We found that some kind of peptidyl linkers can work as peptidyl tags for microbial transglutaminase (MTG)-mediated protein heterodimerization. The Myc epitope (the amino acid sequence: EQKLISEEL) and the T7 epitope (MASMTGGQQMG) that were attached to the N-terminus of enhanced green fluorescent protein (EGFP) were found to serve Gln-tags (i.e. peptidyl tags that provide reactive Gln residues for MTG-mediated protein cross-linking). A calmodulin binding peptide (KRRWKKNFIAVSAANRFKKISSSGAL), the V5 epitope (GKPIPNPLLGLD-ST) and the Strep-tag II (WSHPQFEK) that were attached to the N-terminus of EGFP were found to be Lys-tags that provide reactive Lys residues for the enzymatic cross-linking. The specific Gln-Lys cross-linkage was formed through Gln- and Lys-tags by MTG and the major products were EGFP heterodimers. The reactivity of peptidyl linkers containing reactive Lys residue decreased when they were tethered to C-terminus of EGFP, indicating that the microenvironment or steric hindrance affects more the substrate recognition of MTG than their amino acid sequences. It was found that the insertion of a specific peptide sequence (FERQHMDS, a part of ribonuclease S-peptide) into a loop of EGFP could facilitate the protein cross-linking reaction. These results suggest that commercial peptidyl tags can be employed as specific cross-linkers for MTG-mediated site-specific protein ligation.
Content from these authors
© 2004 The Society of Chemical Engineers, Japan
Previous article Next article
feedback
Top