Anthropological Science
Online ISSN : 1348-8570
Print ISSN : 0918-7960
ISSN-L : 0918-7960
Material Reports
Relationship between the calcaneal size and body mass in primates and land mammals
TAKEHISA TSUBAMOTO
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2019 Volume 127 Issue 1 Pages 73-80

Details
Abstract

The relationship between calcaneal size and body mass in extant primates and other land mammals is examined using regression analyses to provide simple equations for estimating the body mass of extinct primate and land mammal species based on the calcaneus. The results imply that among the linear calcaneal dimensions, the calcaneal width at the talar articular surfaces (CA2) is likely the best body mass estimator for land mammals (including primates), and the width of the posterior talar articular surface (CA3) appears to be relatively good body mass estimator for primates. The equation with a 95% prediction interval for estimating the body mass (BM, in g) using CA2 (in mm) for land mammals is: BM = exp(2.928 × ln CA2 + 0.981 ± 0.772) × 1.076; the corresponding equation using CA3 (in mm) for primates is: BM = exp(2.555 × ln CA3 + 3.536 ± 0.641) × 1.067.

Introduction

The heelbone (calcaneus or calcaneum) and anklebone (talus or astragalus) of primates and other mammals have been well studied in primatology, anthropology, archaeozoology, and vertebrate paleontology as indicators of functional adaptation, phylogeny, and taxonomy (e.g. Szalay, 1977; Gebo et al., 1991; Dagosto and Terranova, 1992; Ciochon et al., 2001; Ciochon and Gunnell, 2004; Gebo and Dagosto, 2004; Gunnell and Ciochon, 2008; Polly, 2008; Marivaux et al., 2010; Jogahara and Natori, 2013; Tsubamoto, 2014; Tsubamoto et al., 2016 and references therein). The bony structure and shape of these two bones are relatively compact and robust (e.g. Gray, 1858), so that these bones are frequently preserved and are found undamaged more often than long bones, vertebrae, or fragile skulls in the fossil and zooarchaeological assemblages (Tsubamoto, 2014; Tsubamoto et al., 2016). The body mass of primates and other mammals, on the other hand, is a useful predictor of species adaptations and diversities because it is strongly correlated with many aspects of life history, ecology, and behavior, etc. (e.g. Peters, 1983; Calder, 1984; LaBarbera, 1989). Therefore, estimates of the body mass of extinct mammalian species play an important role in paleoecological, paleoprimatological, and physical anthropological analyses (e.g. Legendre, 1986, 1989; Conroy, 1987; Anyonge, 1993; Fleagle, 1999; Egi, 2001; Smith et al., 2010; Grabowski et al., 2015; Jungers et al., 2016; Tsubamoto et al., 2016; Ruff and Niskanen, 2018 and references therein). Several studies have investigated the relationship between talar size and body mass in primates and other mammals (Dagosto and Terranova, 1992; Martinez and Sudre, 1995; Rafferty et al., 1995; Polly, 2008; Parr et al., 2011; Tsubamoto, 2014; Yapuncich et al., 2015; Tsubamoto et al., 2016; Dagosto et al., 2018). However, only a few studies have investigated the relationship between calcaneal size and body mass: for example, Dagosto and Terranova (1992) did it for ‘prosimian’ primates (strepsirrhines and Tarsius); Yapuncich et al. (2015) did it for euarchontans (primates, scandentians, and dermopterans); and Dagosto et al. (2018) did it for euarchontans and small mammals.

In this material report, the relationships between the calcaneal size and body mass in living primates and land mammals are examined using regression analyses. The purpose of this report is to provide simple equations that will allow paleoprimatologists and vertebrate paleontologists to estimate the body masses of extinct primate and land mammal species from the calcaneal size. The original data used here are limited, and hence this report should be treated as a pilot study simply for the body mass estimation from the calcaneus. Any other functional signals for, for example, behavior and ecology are not discussed here.

Materials and Methods

The original data used in this study consist of the body mass and 12 linear measurements of the calcaneus of superficially 69 individuals, representing 44 species belonging to 10 orders of extant land mammals, and ranging in body mass from 18 g to 1.4 tonnes (Table 1). Most of the samples are adult individuals with three subadult specimens. These three subadult specimens (Table 1) are used to increase the data points. Most of the individuals used here are the same individuals used by Tsubamoto (2014) and Tsubamoto et al. (2016). The body masses represent the actual body weight of the individual of each specimen and were recorded either while the animals were still alive or just after their death (Tsubamoto, 2014). The data (body mass and 12 linear measurements) for the adult males and females of Japanese monkey (Macaca fuscata fuscata: Primates, Cercopithecidae) and Japanese raccoon dog (Nyctereutes procyonoides viverrinus: Carnivora, Canidae) were derived from the mean values of more than 25 specimens for each sex of each species (Table 1). Owing to the limited availability of specimens for which such data could be obtained, the dataset is somewhat biased towards primates and carnivores (Table 1; Tsubamoto, 2014). The 12 linear measurements (CA1–CA12) are indicated in Figure 1 and Table 2. The units of the linear measurements and body mass are in millimeters (mm) and grams (g), respectively (Table 1).

Table 1 The original data used in this paper
Higher taxa Specimen no. Species BM (g) Sex CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 CA12
Primates NSM-M 31595 Gorilla gorilla 216000 M 95.89 50.57 28.25 25.05 39.99 45.92 33.36 31.76 23.89 41.66 36.10 49.42
Primates KUPRI 8135 Hylobates agilis 8000 F 27.71 15.31 8.26 7.12 8.15 8.44 11.17 9.91 7.53 13.94 13.94 17.63
Primates NSM-M 32559 Pan troglodytes 50000 F 53.83 32.41 18.46 18.22 19.37 20.13 25.58 22.99 14.16 30.60 25.69 30.46
Primates NSM-M 33042 Pan troglodytes 43600 F 54.39 32.72 18.17 17.78 19.74 21.48 22.47 22.71 15.42 29.94 24.81 29.86
Primates NSM-M 31996 Pongo pygmaeus 61000 F 58.35 31.81 16.36 11.48 14.88 20.76 20.74 19.52 14.87 25.14 22.17 30.61
Primates KUPRI 4237 Erythrocebus patas 5000 F 33.38 14.31 7.40 6.44 9.59 12.18 8.87 10.05 7.43 13.27 10.10 11.52
Primates * Macaca fuscata 10245 M 38.05 17.35 9.28 8.78 11.66 13.63 11.75 12.52 8.87 16.25 14.05 16.89
Primates ** Macaca fuscata 7119 F 34.46 15.96 8.45 7.66 10.47 12.03 10.86 11.39 8.15 14.73 12.88 15.36
Primates KUPRI 1626 Papio anubis 31400 M 48.44 23.97 13.91 13.99 17.10 17.93 16.30 17.22 13.19 23.34 21.10 22.55
Primates KUPRI 1625 Papio anubis 29400 M 51.94 26.93 14.47 13.51 17.74 18.36 17.57 16.92 13.29 24.88 22.20 24.19
Primates KUPRI 307 Papio anubis 42000 M 50.28 25.68 14.29 13.70 16.94 19.48 14.56 16.76 12.10 23.67 20.42 23.74
Primates KUPRI 2779 Papio hamadryas 10200 F 37.31 18.75 9.68 8.41 12.63 12.54 13.09 12.82 9.53 16.78 13.97 16.66
Primates KUPRI 6077 (subadult) Papio hamadryas 18100 M 48.48 22.93 12.67 11.77 16.83 16.70 12.77 15.95 11.83 20.19 16.96 18.39
Primates KUPRI 6449 Aotus trivirgatus 940 M 20.52 8.64 4.13 3.95 5.20 6.31 6.69 5.82 4.85 8.39 7.53 8.49
Primates KUPRI 7125 Aotus trivirgatus 1064 F 19.39 8.29 4.20 3.84 5.12 5.16 6.12 5.65 4.36 8.35 7.51 8.48
Primates KUPRI 7130 Callithrix jacchus 300 F 11.45 5.49 2.56 2.94 3.27 3.16 3.71 3.74 2.56 4.90 4.12 4.46
Primates KUPRI 6424 Callithrix jacchus 382 M 11.23 4.46 2.29 2.35 3.06 3.48 3.36 3.12 2.53 4.73 4.01 4.09
Primates KUPRI 4487 Callithrix jacchus 460 M 10.66 4.17 2.44 2.27 2.56 2.49 3.76 3.14 2.32 4.43 3.75 4.22
Primates KUPRI 6091 Cebus apella 2600 F 24.55 10.37 5.18 4.54 6.90 7.32 7.31 7.09 5.64 8.80 7.85 8.55
Primates KUPRI 4245 Cebus apella 2200 M 26.64 12.77 5.98 6.19 7.82 8.24 8.94 8.89 5.92 10.56 8.81 10.41
Primates KUPRI 6429 Saguinus midas 400 M 13.78 5.67 3.15 2.56 3.18 3.32 4.52 3.94 2.82 5.45 4.35 4.71
Primates KUPRI 4314 Saguinus midas 550 F 13.60 5.96 3.05 2.39 3.41 3.95 4.46 4.09 2.71 5.22 4.12 4.68
Primates KUPRI 7174 Saguinus oedipus 450 M 14.56 6.04 2.60 2.63 3.34 4.16 4.39 4.32 2.88 5.42 4.42 4.74
Primates KUPRI 4282 Saimiri sciureus 700 M 16.53 7.10 3.16 3.40 4.56 4.27 5.09 5.09 3.66 6.66 5.66 5.79
Primates KUPRI 3908 Saimiri sciureus 540 F 17.14 7.07 3.20 3.20 3.99 4.84 5.78 5.22 3.92 6.83 5.92 6.64
Primates KUPRI 4691 Galago crassicaudatus 910 M 33.26 6.89 2.78 3.21 4.77 8.13 4.61 5.27 4.05 7.26 5.75 6.54
Primates KUPRI 4315 Galago senegalensis 100 F 25.99 4.30 1.77 2.05 2.87 4.44 2.90 2.44 2.15 4.37 3.78 4.18
Primates KUPRI 6699 Lemur catta 2330 F 24.09 10.22 3.86 5.25 6.56 6.97 6.41 7.40 5.02 9.79 8.79 9.28
Scandentia KUPRI 2789 Tupaia glis 125 F 9.20 4.71 1.73 1.78 2.39 3.18 2.69 2.62 1.94 3.52 2.71 2.99
Scandentia KUPRI 2914 Tupaia glis 90 F 8.73 4.20 1.49 1.57 2.20 2.96 2.53 2.61 1.91 3.27 2.56 2.90
Carnivora NSM-M 31458 Ailuropoda melanoleuca 108300 F 61.64 28.87 10.97 12.27 22.64 28.55 24.81 17.87 13.75 26.62 19.85 25.24
Carnivora KUPRI-Z 441 Canis familiaris 5690 F 33.29 13.20 6.24 5.73 9.89 14.34 11.03 10.52 7.69 14.16 9.42 10.71
Carnivora KUPRI-Z 438 Canis familiaris 14500 M 39.30 15.23 7.26 6.91 11.25 15.75 12.94 11.40 8.70 17.22 11.14 11.82
Carnivora KUPRI-Z 986 Felis catus 3300 ? 28.72 11.08 4.81 5.10 7.35 10.75 9.21 5.01 6.94 10.07 7.58 7.74
Carnivora KUPRI-Z 753 Felis catus 6160 M 30.50 11.82 4.69 5.79 7.89 13.08 9.34 5.29 7.14 10.82 8.80 8.03
Carnivora KUPRI-Z 462 Martes melampus 900 ? 18.55 9.29 3.94 3.02 5.23 6.07 8.10 4.38 4.93 7.09 5.76 6.18
Carnivora KUPRI-Z 460 Martes melampus 900 F 16.97 8.65 3.68 2.85 4.91 6.54 6.97 4.25 5.01 6.47 5.43 5.62
Carnivora KUPRI-Z 619 Mustela sibirica 300 M 9.90 4.52 1.99 1.64 2.74 3.31 3.66 2.68 2.60 3.98 3.39 4.03
Carnivora KUPRI-Z 620 Mustela sibirica 150 F 7.20 3.44 1.46 1.26 2.23 3.79 1.83 1.77 1.99 2.81 2.57 3.10
Carnivora KUPRI-Z 621 Mustela sibirica 420 M 12.48 6.19 3.18 2.59 4.24 3.96 5.14 3.58 2.88 5.47 5.02 5.83
Carnivora *** Nyctereutes procyonoides 3651 M 23.94 10.38 4.28 4.23 6.45 9.93 8.31 6.96 5.70 9.90 7.36 9.04
Carnivora **** Nyctereutes procyonoides 3805 F 23.77 10.39 4.20 4.21 6.35 9.80 8.38 7.02 5.81 9.80 7.35 8.77
Carnivora KUPRI-Z 985 Paguma larvata 3600 F 23.24 9.71 4.41 3.17 7.31 8.42 8.07 6.79 5.23 8.02 7.44 7.69
Carnivora KUPRI-Z 1376 (subadult) Paguma larvata 3400 F 24.92 10.08 4.05 3.44 6.42 9.08 8.67 7.14 5.60 8.29 7.82 8.33
Carnivora NMS-M 31999 (subadult) Pantela leo 131000 M 107.26 39.85 16.60 18.50 30.07 53.73 32.15 25.25 20.75 43.20 31.98 31.60
Carnivora NSM-M 33055 Pantela leo 97000 F 90.16 36.24 13.69 15.58 24.81 42.18 27.80 21.47 18.15 38.30 31.59 24.94
Carnivora KUPRI-Z 747 Procyon lotor 6100 F 28.93 12.94 4.89 5.07 8.26 9.21 10.43 7.70 7.64 11.08 8.98 10.39
Carnivora KUPRI-Z 767 Suricata suricatta 450 ? 15.05 6.01 2.64 2.53 4.43 4.97 4.67 3.13 3.88 5.59 4.78 5.21
Carnivora NSM-M 33061 Ursus actos yesoensis 163200 F 81.94 45.51 18.80 17.15 29.69 41.67 32.69 26.42 20.14 42.25 33.45 35.37
Carnivora KUPRI-Z 403 Vulpes vulpes 4700 M 31.90 12.77 5.11 5.31 8.09 14.00 10.16 9.29 7.83 12.78 9.27 9.86
Carnivora KUPRI-Z 414 Vulpes vulpes 3900 F 30.33 11.53 4.90 5.10 7.92 12.14 10.33 5.65 7.17 11.96 8.73 8.91
Eulipotyphla NSM-M 20690 Urotrichus talpoides 18 F 3.76 1.54 0.67 0.57 0.64 1.99 0.77 0.74 0.64 1.10 1.03 1.10
Rodentia NSM-M 35524 Cavia porcellus 550 F 13.09 5.86 2.54 2.54 2.75 3.17 3.60 2.88 2.30 4.25 2.68 3.54
Lagomorpha KUPRI-Z 785 Lepus brachyurus 3000 M 27.14 11.26 4.25 5.58 7.13 11.65 6.61 7.93 5.19 9.40 5.14 4.81
Lagomorpha KUPRI-Z 787 Lepus brachyurus 2150 F 27.42 11.54 4.41 5.12 6.62 12.30 7.17 7.92 3.67 10.07 5.39 5.58
Tubulidentata NSM-M 34334 Orycteropus afer 49300 M 75.68 35.62 14.81 14.28 17.15 42.19 19.36 32.68 19.40 34.93 25.97 26.89
Artiodactyla KUPRI-Z 1331 Cervus nippon 35000 F 66.33 22.43 6.34 6.92 14.28 43.11 14.88 16.77 8.59 23.49 16.04 18.60
Artiodactyla NSM-M 33056 Bubalus babalis 513000 M 156.59 54.88 21.18 25.78 42.72 101.09 32.02 15.40 43.02 67.44 39.14 49.37
Artiodactyla NSM-M 31301 Bubalus babalis 374400 F 143.39 50.07 19.05 22.27 39.17 89.82 30.50 16.31 42.88 57.71 34.69 43.03
Artiodactyla NSM-M 31304 Giraffa camelopardalis 800000 M 192.06 77.57 25.99 31.18 51.72 123.99 43.58 21.02 54.05 91.03 51.03 53.35
Artiodactyla NSM-M 33057 Giraffa camelopardalis 620000 F 184.80 73.78 22.86 32.17 53.33 114.17 45.16 23.41 56.42 87.53 49.61 59.00
Artiodactyla NSM-M 31318 Oryx dammah 99000 M 94.47 33.22 9.34 12.62 25.10 63.23 20.78 13.16 24.91 37.08 25.17 26.67
Perissodactyla NSM-M 33530 Ceratotherium simum 1400000 F 129.50 81.45 44.32 45.66 56.34 73.11 38.60 35.68 37.24 66.00 57.22 78.25
Perissodactyla NSM-M 31302 Equus ferus przewalskii 357400 F 101.59 53.38 23.64 18.33 30.72 57.16 22.75 13.23 21.54 46.36 40.65 49.98
Perissodactyla NSM-M 31303 Equus ferus przewalskii 345100 F 105.95 52.46 22.72 19.75 32.84 57.37 23.75 13.72 19.04 47.35 39.36 50.33
Perissodactyla NSM-M 33398 Equus grevyi 295400 F 107.14 53.66 22.66 19.06 30.83 56.87 18.68 12.24 19.02 47.51 43.01 50.98
Perissodactyla NSM-M 31634 Tapirus indicus 297900 M 111.49 51.99 22.95 15.99 29.07 59.96 24.36 17.59 30.53 41.50 32.91 40.44
Perissodactyla NSM-M 33067 Tapirus terrestris 237700 F 101.08 45.66 26.13 18.19 24.97 52.62 23.93 14.69 27.34 36.21 30.88 35.92
Marsupialia NSM-M 35838 Macropus giganteus 56200 M 80.03 25.64 11.72 17.44 23.08 57.15 14.91 25.07 22.93 28.96 23.92 26.31

Institutional abbreviations: KUPRI, Primate Research Institute, Kyoto University, Inuyama, Japan; KUPRI-Z, zoological collection stored in KUPRI; NSM-M, mammalian collection stored in National Museum of Nature and Science, Tsukuba, Japan (formerly National Science Museum, Tokyo, Japan). Other abbreviations: BM, body mass; M, male; F, female; CA1–CA12, linear measurements of the calcaneus used in this study (in mm; Figure 1; Table 2).

*  Data from the mean values of 110 adult male specimens of Macaca fuscata stored in KUPRI.

**  Data from the mean values of 119 adult female specimens of M. fuscata stored in KUPRI.

***  Data from the mean values of 35 adult male specimens of Nyctereutes procyonoides stored in KUPRI.

****  Data from the mean values of 28 adult female specimens N. procyonoides stored in KUPRI.

Figure 1

Twelve linear measurements (CA1–CA12) made on the calcaneus used in this study. The definitions of CA1–CA12 are shown in Table 2. The illustrations are based on a left calcaneus of Macaca fuscata (Primates, Catarrhini, Cercopithecidae): (A) dorsal (anterior) view; (B) lateral view; (C) distal view.

Table 2 Definitions of the 12 linear measurements (CA1–CA12; Figure 1) of the calcaneus
Measurement Definition
CA1 calcaneal length (= C1 of Dagosto and Terranova, 1992)
CA2 calcaneal width at the talar articular surfaces (~C2 of Dagosto and Terranova, 1992)
CA3 width of the posterior talar articular surface (= C4 of Dagosto and Terranova, 1992)
CA4 width of the posterior calcaneal body
CA5 width of the tuberosity
CA6 length of the posterior calcaneal body (= C7 of Dagosto and Terranova, 1992)
CA7 length of the posterior talar articular surface (= C3 of Dagosto and Terranova, 1992)
CA8 width of the articular surface for cuboid (= C6 of Dagosto and Terranova, 1992)
CA9 height of the articular surface for cuboid (= C5 of Dagosto and Terranova, 1992)
CA10 height at the posterior talar articular surface
CA11 height at the posterior calcaneal body
CA12 height at the tuberosity

The data were transformed to natural logarithms for the analyses. The regression analyses were performed using the same procedure used by Tsubamoto (2014) and Tsubamoto et al. (2016). They were performed on two data sets: the land mammal model (superficially 69 individuals; including primates) and primate model (superficially 28 individuals) (Table 1, Table 3).

Table 3 Summary of bivariate simple regression analyses performed using Excel (Microsoft) to predict the body mass on a natural log scale
ln CA1 ln CA2 ln CA3 ln CA4 ln CA5 ln CA6 ln CA7 ln CA8 ln CA9 ln CA10 ln CA11 ln CA12
Land mammal model Slope 2.969 2.928 2.857 2.815 2.747 2.359 3.074 3.027 2.757 2.779 2.861 2.777
N = 69 Intercept −1.611 0.981 3.486 3.629 2.718 2.773 1.788 2.390 3.227 1.600 2.041 1.917
t-value = 1.9960 SEE 0.649 0.387 0.639 0.609 0.441 0.674 0.660 1.064 0.571 0.441 0.522 0.551
(df = 69 – 2 = 67) adjusted R2 0.941 0.979 0.943 0.948 0.973 0.936 0.939 0.841 0.954 0.973 0.962 0.957
(95% CL) adjusted CF 1.156 1.076 1.203 1.161 1.116 1.092 1.342 1.876 1.037 1.061 1.205 1.165
%SEE 91.293 47.210 89.396 83.779 55.458 96.225 93.515 189.815 77.019 55.415 68.611 73.418
%MPE 44.075 32.360 62.890 57.423 38.673 59.048 65.407 155.350 52.109 38.924 46.841 49.036
%MPEad-CF 38.925 30.649 53.452 51.509 36.592 53.591 58.515 103.496 50.793 37.654 41.462 43.755
Primate model Slope 3.153 2.782 2.555 2.678 2.656 2.617 2.957 2.836 2.891 2.938 2.871 2.690
N = 28 Intercept −2.325 1.213 3.536 3.424 2.756 2.527 1.834 2.139 2.914 1.038 1.649 1.704
t-value = 2.0555 SEE 0.857 0.337 0.312 0.396 0.420 0.588 0.399 0.331 0.338 0.331 0.361 0.365
(df = 28 – 2 = 26) adjusted R2 0.823 0.973 0.977 0.962 0.957 0.917 0.962 0.974 0.972 0.974 0.969 0.968
(95% CL) adjusted CF 1.331 1.071 1.067 1.074 1.029 1.098 1.045 1.103 1.092 1.077 1.101 1.064
%SEE 135.574 40.135 36.565 48.535 52.244 80.102 48.991 39.223 40.210 39.299 43.408 44.079
%MPE 43.558 26.349 26.139 31.626 33.218 41.161 31.717 27.412 27.144 25.677 27.780 27.157
%MPEad-CF 34.847 25.552 25.390 30.094 33.046 35.604 30.527 27.520 26.167 25.828 26.928 25.059

Abbreviations: N, sample size; SEE, standard error of estimate; adjusted R2, coefficient of determination adjusted to the number of variables; adjusted CF, correction factor adjusted using the three correction factors proposed by Tsubamoto (2014); df, degrees of freedom; CL, confidence level; %SEE, percent standard error of estimate; %MPE, mean percentage prediction error; %MPEad-CF, %MPE for the corrected values using the adjusted CF (Tsubamoto, 2014). Bold value with underline indicates the lowest value in each row of %SEE, %MPE, and %MPEad-CF; bold value indicates the second lowest value in it; and value with underline indicates the third lowest value in it.

The results of the multiple regression analysis with a stepwise option performed using the JMP package (SAS Institute Inc.) vary according to the criteria used in the software. Therefore, here, simple linear bivariate regression analysis was applied to perform the body mass estimation. Although multiple regression analysis or areal/volumetric regression analysis may provide more ‘accurate’ equations, I chose simple linear regression analysis to provide simpler equations and to extend the availability and applicability of the equations for vertebrate paleontologists. On the other hand, although Model II regression techniques such as major axis and reduced major axis regressions are sometimes used for body mass estimation (e.g. Egi, 2001; Niskanen et al., 2018; Ruff and Niskanen, 2018; Ruff et al., 2018), I chose the least-squares regression because it can provide prediction errors (Warton et al., 2006).

When regression is performed using log-transformed data, a systematic detransformation bias is introduced (Smith, 1993a, b). To correct for this bias, correction factors are sometimes used (Sprugel, 1983; Snowdon, 1991; Smith, 1993a, b; Egi et al., 2002, 2004; Tsubamoto, 2014; Tsubamoto et al., 2016). Here, the adjusted correction factor (adjusted CF) proposed by Tsubamoto (2014) was calculated (Table 3) and applied. When estimating body mass, the estimated log value of the body mass is first de-transformed to the actual value in grams, and then is multiplied by the adjusted CF (Tsubamoto, 2014).

For the body mass estimation process, the 95% prediction intervals were calculated. The approximations of the 95% prediction intervals can be calculated as follows using the standard error of estimate (SEE) (Ruff, 2003; Tsubamoto, 2014; Tsubamoto et al., 2016): ± t-value × SEE. This approximation was used here to calculate the estimated body masses easily. The estimated body mass (BM in the equation) with 95% prediction interval for the measurements using the adjusted CF is calculated as follows: BM in g = {exp[slope × ln(measurement in mm) + intercept (± t -value × SEE )> × adjusted CF.

The degree of correlation (accuracy) between body mass and calcaneal size was evaluated using the percent standard error of estimate (%SEE) and the mean percentage prediction errors (%MPE and %MPEad-CF) (Tsubamoto, 2014; Tsubamoto et al., 2016). %SEE for natural log-transformed data was calculated as %SEE = (eSEE – 1) × 100 (Smith, 1984a; Egi et al., 2002; Ruff, 2003). %PE is the percentage of prediction error of the de-transformed value (not using the adjusted CF) and is calculated as %PE = (original value – estimated value)/estimated value × 100 (Smith, 1981, 1984a, b). %MPE is the arithmetic mean of the absolute values of %PE for each variable calculated for each individual (Smith, 1981, 1984a, b; Dagosto and Terranova, 1992). %MPEad-CF is %MPE for the values corrected using the adjusted CF (Tsubamoto, 2014).

Results and Remarks

The results of the simple bivariate regression analyses are shown in Table 3 and in Figure 2 and Figure 3. The values of the degree of correlation for the measurements (%SEE, %MPE, and %MPEad-CF) vary in each model.

Figure 2

Comparison of %SEE, %MPE, and %MPEad-CF of the body mass estimate regressions derived from the calcaneal dimensions (Figure 1; Table 2).

Figure 3

Examples of body mass (BM; in g) estimate regressions and data scatters on a natural log scale: (A) using CA2 (in mm) for the mammal model; and (B) using CA3 (in mm) for the primate model. Black lines indicate least-squares axis. Dashed lines indicate the upper and lower 95% prediction limits.

In the land mammal model, CA2 has the lowest %SEE, %MPE, and %MPEad-CF values (Table 3; Figure 2), i.e. CA2 is the most suitable for the body mass estimation with land mammals as a target, among the 12 measurements. These %SEE, %MPE, and %MPEad-CF values (47.21, 32.36, and 30.65, respectively) of CA2 in the land mammal model are higher than those of the best measurement for the body mass estimation based on the talus of land mammals studied by Tsubamoto (2014) (41.98, 28.83, and 28.00, respectively). This implies that the talus is likely better than the calcaneus for body mass estimation with land mammals as a target.

In the primate model, CA3 has the lowest %SEE value and the second lowest %MPE and %MPEad-CF values (Table 3; Figure 2). Based on the %MPE and %MPEad-CF values of the primate model, CA2 and CA8–CA12 are as low as CA3 (Table 3; Figure 2). Therefore, CA3 appears to be the most suitable for the body mass estimation with the primates as a target, although CA2 and CA8–CA12 are roughly as suitable as CA3. Compared to the values of the good measurements for the body mass estimation in the talus of the primates studied by Tsubamoto et al. (2016), the %SEE value of CA3 of the primate model is lower than that studied by Tsubamoto et al. (2016); and its %MPE and %MPEad-CF values are nearly as low as that studied by Tsubamoto et al. (2016). This suggests that, unlike the land mammal model, the calcaneus appears to be as good as the talus for body mass estimation with the primates as a target. However, we should note the fact that the original data of these studies are in fact limited, so that the additional data may alter the results.

The examples of the regression equation with a 95% prediction interval to estimate the body mass (BM, g) are as follows. Using CA2 (in mm) for the land mammal model, BM = exp(2.928 × ln CA2 + 0.981 ± 0.772) × 1.076. Using CA3 (in mm) for the primate model, BM = exp(2.555 × ln CA3 + 3.536 ± 0.641) × 1.067.

The results of the regression analyses of the primate model for CA1–CA3 and CA6–CA9 are briefly compared with those of the calcaneus of the all-strepsirrhine model for the linear measurements C1–C7 by Dagosto and Terranova (1992) (Table 4). The results of CA2–CA3 and CA6–CA9 are roughly similar to those by Dagosto and Terranova (1992). However, the results of CA1 (calcaneal length) are distinguished from those by Dagosto and Terranova (1992): in particular, the slope and intercept are quite different with each other (Table 4). This difference can be information in considering the ecological or phyletic characteristics of the calcaneus of the strepsirrhines among the primates.

Table 4 Comparison of the regressions of the primate model for the linear measurements CA1–CA3 and CA6–CA9 (Figure 1; Table 2) with those of the all-strepsirrhine model for the linear measurements C1–C7 by Dagosto and Terranova (1992)
This study primate model Dagosto and Terranova (1992) This study primate model Dagosto and Terranova (1992) This study primate model Dagosto and Terranova (1992) This study primate model Dagosto and Terranova (1992)
ln CA1 ln C1 ln CA2 ln C2 ln CA3 ln C4 ln CA6 ln C7
Slope 3.15 1.48 2.78 2.86 2.55 3.34 2.62 2.48
Intercept –2.33 2.13 1.21 1.42 3.54 3.23 2.53 2.70
SEE 0.86 1.16 0.34 0.34 0.31 0.38 0.59 0.70
r 0.95 0.48 0.95 0.97 0.95 0.96 0.95 0.85
%SEE 135.57 218.99 40.14 40.49 36.56 46.23 80.10 101.38
%MPE 43.56 59.32 26.35 26.13 26.14 29.57 41.16 46.36
ln CA7 ln C3 ln CA8 ln C6 ln CA9 ln C5
Slope 2.96 2.74 2.84 2.70 2.89 2.93
Intercept 1.83 2.35 2.14 2.46 2.91 2.81
SEE 0.40 0.36 0.33 0.28 0.34 0.44
r 0.95 0.96 0.95 0.98 0.95 0.94
%SEE 48.99 43.33 39.22 32.31 40.21 55.27
%MPE 31.72 28.44 27.41 21.05 27.14 32.84

Abbreviations: SEE, standard error of estimate; r, Pearson’s product moment correlation coefficient; %SEE, percent standard error of estimate; %MPE, mean percentage prediction error. CA1: C1 of Dagosto and Terranova (1992); CA2: approximately equal to C2 of Dagosto and Terranova (1992); CA3: C4 of Dagosto and Terranova (1992); CA6: C7 of Dagosto and Terranova (1992); CA7: C3 of Dagosto and Terranova (1992); CA8: C6 of Dagosto and Terranova (1992); CA9: C5 of Dagosto and Terranova (1992).

Acknowledgments

I am grateful to the following individuals involved in access to the specimens used in this research: Masanaru Takai, Takeshi Nishimura, and Naoko Egi (Primate Research Institute, Kyoto University, Inuyama, Japan); and Shin-ichiro Kawada (National Museum of Nature and Science, Tsukuba, Japan). I am also grateful to the reviewer for the useful comments. This work was supported by the Cooperation Program (2011-A-3, 2012-B-2, 2013-B-15, and 2014-B-2) of the Primate Research Institute (Kyoto University, Inuyama, Japan) and by JSPS KAKENHI grant numbers 21770265, 25840172, and 16K07534.

References
 
© 2019 The Anthropological Society of Nippon
feedback
Top