Abstract
An ultrasonic motor using two bolt-clamped Langevin-type transducers was described. A rigorous optimization of the motor’s structure was conducted and its results are reported in regard to various motor parameters. Based on FEM analysis and experimental results it was established that symmetric and anti-symmetric resonance frequencies could be matched by adjusting the mass of the tip of the motor’s head block. The driving voltage of the motor was reduced by using stacked multi-layered piezo-elements. The velocity of the motor fabricated in this study was more than 1.5 m/s and 25 N in a condition. However, a velocity of less than 100 mm/s could not be achieved using conventional resonance driving. In the case of a velocity lower than 1 mm/s, driving was achieved by “inertial driving.” 1.5 nm resolution was observed using DC driving.