Abstract
A method of sampling jitter measurement based on time-domain analytic signals is proposed. Computer simulations and actual measurements were performed to compare the proposed method with the conventional method, in which jitter is evaluated from the amplitudes of sideband spectra for observed signals in the frequency domain. The results show that the proposed method is effective in that it 1) provides high temporal resolution as a result of the direct derivation of the jitter waveform, 2) achieves higher accuracy in the measurement of jitter amplitude, and 3) can separate phase modulation that originate in sampling jitter from amplitude modulation that originate in digital-to-analog and analog-to-digital conversion processes. Suitable measurement conditions and measurements to separate the effects of jitter in a digital-to-analog converter and an analog-to-digital converter are described.