The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Distinction in the Mode of Receptor-Mediated Endocytosis between High Density Lipoprotein and Acetylated High Density Lipoprotein: Evidence for High Density Lipoprotein Receptor-Mediated Cholesterol Transfer
Masaji MURAKAMISeikoh HORIUCHIKyoko TAKATAYoshimasa MORINO
Author information
JOURNAL FREE ACCESS

1987 Volume 101 Issue 3 Pages 729-741

Details
Abstract

The interactions of high density lipoprotein (HDL) and acetylated high density lipoprotein (acetyl-HDL) with isolated rat sinusoidal liver cells have been investigated. Cellular binding of 125I-acetyl-HDL at 0°C demonstrated the presence of a specific, saturable membrane-associated receptor. This receptor was affected neither by formaldehyde-treated albumin nor by low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptormediated endocytosis by the cells, indicating that the receptor for acetyl-HDL constitutes a distinct class among the scavenger receptors for chemically modified proteins. Parallel binding experiments using 125I-HDL also revealed the presence on these cells of a receptor for unmodified HDL. The ligand specificities of these two receptors were similar to each other except that the acetyl-HDL receptor was sensitive to polyanions such as dextran sulfate and fucoidin. Interaction of HDL with the cells at 37°C was totally different from that of acetyl-HDL. Cellular binding of HDL was not accompanied by subsequent intracellular degradation of its apoprotein moiety, whereas its cholesterol moiety was significantly transferred to the cells. In contrast, acetyl-HDL was endocytosed and underwent lysosomal degradation as a holoparticle. This shift in receptor-recognition from the HDL receptor to the acetyl-HDL receptor was accomplished by acetylation of _??_8% of the total lysine residues of HDL apoprotein. This unique difference in endocytic behavior between HDL and acetyl-HDL suggests a potential link of the HDL receptor to HDL-mediated cholesterol transfer in sinusoidal liver cells.

Content from these authors
© The Japanese Biochemical Society
Previous article Next article
feedback
Top