The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
A Soluble Protease Identified from Rat Kidney Degrades Endothelin-1 but Not Proendothelin-1
Yilun DengLouis L. MartinDominick DelGrandeArco Y. Jeng
Author information
JOURNAL FREE ACCESS

1992 Volume 112 Issue 1 Pages 168-172

Details
Abstract
Endothelin-1 (ET-1) is a potent peptidic vasoconstrictor. This peptide has been shown to be cleared rapidly by the kidney. The purpose of the present study was to assess the involvement of renal proteolytic enzymes in the clearance/degradation of ET- 1. Incubation of ET-1 with the cytosolic fraction of rat kidney homogenate resulted in a decrease of contractile activity on rabbit aortic rings when compared to the untreated ET-1. This cytosolic fraction was chromatographed by anion-exchange and concanavalin A columns. The partially purified enzyme cleaved off the C-terminal tryptophan of ET-1 rapidly, resulting in a peptide which is three orders of magnitude weaker in potency than ET-1 in causing smooth muscle contraction. In contrast, proendothelin-1 was not degraded by this endothelin degradation enzyme (EDE). The effects of EDE on other vasoactive peptides were also examined. The C-terminal tyrosine of atrial natriuretic peptide was cleaved by EDE, but the biological activity of the resulting peptide was not significantly changed. Angiotensin II was not a substrate for EDE. The EDE was shown to be different from both carboxypeptidases A and B based on the HPLC analysis of the degradation products of ET-1 produced by these enzymes. In addition, these enzymes displayed different sensitivities toward a carboxypeptidase inhibitor from potato tuber. These results suggest that this previously unidentified enzyme inactivates ET-1 effectively and that it may play a role in modulating the levels of ET-1 in the kidney.
Content from these authors
© The Japanese Biochemical Society
Previous article
feedback
Top