The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Possible Differences in the Regenerative Roles Played by Thioltransferase and Thioredoxin for Oxidatively Damaged Proteins
Shinichiro YoshitakeHiroki NanriMihindukulasuriya Rohan FernandoShigeki Minakami
Author information
JOURNAL FREE ACCESS

1994 Volume 116 Issue 1 Pages 42-46

Details
Abstract

A possible involvement of thioltransferase (also known as glutaredoxin) in the regenerative reaction of proteins inactivated by oxidative stress were examined in vitro using the enzyme purified from bovine liver. Thioltransferase at physiological concentrations, together with glutathione, glutathione reductase and NADPH, regenerated the oxidatively damaged proteins with a comparable potency to that of thioredoxin. Experiments performed with protein substrates with their critical cysteine residues oxidized differently, that is, phosphofruktokinase and glyceraldehyde 3-phosphate dehydrogenase with mixed disulfide bonds and glyceraldehyde 3-phosphate dehydrogenase with sulfenyl or sulfinyl groups, indicated that thioltransferase regenerated the proteins inactivated by mixed disulfide formation more efficiently than thioredoxin, whereas thioredoxin preferentially regenerated the proteins inactivated by monothiol oxidation to sulfenic or sulfinic acid. These findings suggested that thioltransferase exerted regenerative effects on oxidatively damaged proteins like its cognate protein, thioredoxin, but with different substrate specificity, and their relative contribution to the regeneration reaction is dependent on the form of the oxidized thiols of the damaged proteins.

Content from these authors
© The Japanese Biochemical Society
Previous article Next article
feedback
Top