The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Identification of the Catalytic Triad Residues of Porcine Liver Acylamino Acid-Releasing Enzyme
Masanori MittaMasaru MiyagiIkunoshin KatoSusumu Tsunasawa
Author information
JOURNAL FREE ACCESS

1998 Volume 123 Issue 5 Pages 924-931

Details
Abstract

Acylamino acid-releasing enzyme (AARE) [EC 3. 4. 19. 1] is a tetrameric serine protease, which belongs to the oligopeptidase family and specifically removes acetyl amino acids from N-terminally acetylated peptides. By using diisopropyl fluorophosphate, we previously identified one of the residues comprising the catalytic triad of this enzyme as Ser587 [Miyagi, M. et al. (1995) J. Biochem. 118, 771-779]. To elucidate the other two residues forming the catalytic triad of this new serine-type protease, wild-type and four mutant AAREs, in which each candidate residue of the catalytic triad deduced from sequence alignment with other oligopeptidases was substituted by site-directed mutagenesis, were expressed in Escherichia coli as fusion proteins with short peptide chains at both N- and C-termini of a subunit of porcine liver enzyme. All of the recombinant AAREs were estimated to have similar conformational and quaternary structures to the native porcine liver enzyme from their CD spectra and behavior on gel-filtration, but the mutants in which Ala587, Asn675, or Tyr707 was substituted for Ser587, Asp675, or His707, respectively, did not show detectable hydrolytic activity toward acetyl-L-methionyl L-alanine. These facts suggest that Ser587, Asp675, and His707 are essential residues for the AARE activity and comprise the catalytic triad of the enzyme in this order. Thus, AARE has been shown to have a protease-like domain in its C-terminal region, as do other proteins classified as members of the oligopeptidase family.

Content from these authors
© The Japanese Biochemical Society
Previous article Next article
feedback
Top