The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
Identification of Carboxyl Residues in Pepstatin-Insensitive Carboxyl Proteinase from Pseudomonas sp. 101 that Participate in Catalysis and Substrate Binding
Masaaki ItoShoji NarutakiKen-ichi UchidaKohei Oda
Author information
JOURNAL FREE ACCESS

1999 Volume 125 Issue 1 Pages 210-216

Details
Abstract

Pseudomonas carboxyl proteinase (PCP), isolated from Pseudomonas sp. 101, is the first example from a prokaryote of unique carboxyl proteinases [EC 3.4.23.33] which are insensitive to aspartic proteinase inhibitors, such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1, 2-epoxy-3(p-nitrophenoxy)propane. To identify the catalytic residue(s) of PCP, chemical modification was carried out using carboxyl residue-specific reagents, carbodiimides. PCP was inactivated effectively by N, N'-dicyclohexylcarbodiimide (DCCD) with pseudo-first-order kinetics. For the inactivation, 0.7 mol DCCD was involved per 1 mol PCP. The effects of pH and methanol on the inactivation showed that two carboxyl residues (Asp and/or Glu) were involved in the reaction. The inactivation by DCCD was prevented by a competitive inhibitor, tyrostatin, or a synthetic substrate in a concentration-dependent manner. Based on these data, differential labeling of PCP with DCCD was carried out: Firstly, PCP was treated with cold DCCD in the presence of tyrostatin. After removal of the tyrostatin, which covered the substrate binding site, by dialysis, the PCP was treated with [14C]DCCD to label carboxyl residue(s) essential for its function. Two labeled peptides were isolated by HPLC from a trypsin digest of cold- and [14C]DCCD modified PCP. On analysis of their amino acid sequences, it was revealed that the [14C]-DCCD was bound to Asp140 and Glu222 of PCP, respectively. Based on these data, it was strongly suggested that Asp140 and Glu222 of PCP were involved in its catalytic function or substrate binding.

Content from these authors
© The Japanese Biochemical Society
Previous article
feedback
Top