The Journal of Biochemistry
Online ISSN : 1756-2651
Print ISSN : 0021-924X
X-Ray Crystal Structure and Catalytic Properties of Thr252IIe Mutant of Cytochrome P450cam: Roles of Thr252 and Water in the Active Center
Takako HishilkiHideo ShimadaShingo NaganoTsuyoshi EgawaYasukazu KanamoriRyu MakinoSam-Yong ParkShin-ichi AdachiYoshitsugu ShiroYuzuru Ishimura
Author information
JOURNAL FREE ACCESS

2000 Volume 128 Issue 6 Pages 965-974

Details
Abstract
The structure-function relationship in cytochrome P450cam monooxygenase was studied by employing its active site mutant Thr252IIe. X-ray crystallographic analyses of the ferric d-camphor-botmd form of the mutant revealed that the mutation caused a structural change in the active site giving an enlarged oxygen-binding pocket that did not contain any hydrophilic group such as the OH group of Thr and H2O. The enzyme showed a low monooxygenase activity of ca. 1/10 of the activity of the wild-type enzyme. Kinetic analyses of each catalytic step revealed that the rate of proton-coupled reduction of the oxygenated intermediate of the enzyme, a ternary complex of dioxygen and d-camphor with the ferrous enzyme, decreased to about 1/30 of that of the wild-type enzyme, while the rates of other catalytic steps including the reduction of the ferric dcamphor-bound form by reduced putidaredoxin did not change significantly. These results indicated that a hydrophilic group(s) such as water and/or hydroxyl group in the active site is prerequisite to a proton supply for the reduction of the oxygenated intermediate, thereby giving support for the operation of a proton transfer network composed of Thr252, Asp251, and two other amino acids and water proposed by previous investigators.
Content from these authors
© The Japanese Biochemical Society
Previous article Next article
feedback
Top