BIOPHYSICS
Online ISSN : 1349-2942
ISSN-L : 1349-2942
Regular Article
Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons
Yi-Wen LinChih-Cheng Chen
Author information
JOURNAL FREE ACCESS

2015 Volume 11 Pages 9-16

Details
Abstract
Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (Iacid), as well as capsaicin-induced current (Icap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acidsensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, afterhyperpolarization duration, and all Iacid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and Icap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.
Content from these authors
© 2015 THE BIOPHYSICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top