BPB Reports
Online ISSN : 2434-432X
Regular Article
Verification of MA-T Safety and Efficacy Against Pathogens Including SARS-CoV-2
Takekatsu ShibataRyuta UrakawaChikako OnoYukihiro AkedaTakayoshi SakaiShigeto HamaguchiKiyoto TakamoriTsuyoshi InoueKazunori TomonoKiyoshi KonishiYoshiharu Matsuura
Author information
JOURNALS OPEN ACCESS FULL-TEXT HTML

2021 Volume 4 Issue 3 Pages 78-84

Details
Abstract

Matching transformation system (MA-T) is an on-demand aqueous chlorine dioxide solution. It is a disinfectant developed to maximize the safety of chlorine dioxide radical in water and its effectiveness against various microorganisms. In this study, we examined the safety and effectiveness of MA-T for its use in various infectious disease countermeasures, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consider if MA-T can be implemented in society. To validate the safety of MA-T, we conducted safety tests and efficacy tests in accordance with GLP-based reliability criteria. To evaluate the efficacy, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) confirmation tests against various bacteria, and virus inactivation test against various viruses including SARS-CoV-2 by TCID50 method were performed. The results of safety tests showed that MA-T was at least as safe as Japanese tap water. As a result of efficacy tests for microorganisms, MA-T was effective against many bacteria. Efficacy tests for virus showed that MA-T inactivates SARS-CoV-1, Middle East respiratory syndrome coronavirus (MERS-CoV), rotavirus A (RV-A), hepatitis C virus (HCV), dengue virus (DENV), and hepatitis B virus (HBV). MA-T also inactivated 99.98% of SARS-CoV-2, which is equivalent to ethanol for disinfection. MA-T has proven to be a safe and effective disinfectant. MA-T is a next-generation disinfectant that has the potential to be safer and more effective than conventional chlorine disinfectants and other disinfectants. It also proved to be an effective disinfectant against SARS-CoV-2, which is currently causing pandemic all over the world.

Information related to the author
© 2021 The Pharmaceutical Society of Japan

BPB Reports applies the Creative Commons Attribution (CCBY) license to works we published. The license was developed to facilitate open access - namely, free immediate access to, and unrestricted reuse of, original works to all types. Under this license, authors agree to make articles legally available for reuse, without permissions of fees, for virtually any purpose. Anyone may copy, distribute, or reuse these articles, as long as the author and original source are properly cited.
https://creativecommons.org/licenses/by/4.0/
Next article
feedback
Top