BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN
Online ISSN : 2186-490X
Print ISSN : 1346-4272
ISSN-L : 1346-4272
Article
Geochemistry of soils from the southern Kanto district, Japan: Preliminary study for the soil geochemical mapping (part 5: Generalization).
Shigeru TerashimaNoboru ImaiAtsuyuki OhtaTakashi OkaiMasumi Mikoshiba
Author information
JOURNAL FREE ACCESS

2004 Volume 55 Issue 1-2 Pages 1-18

Details
Abstract

In order to characterize the geochemical map of soil elements, major and minor elements were determined for Kuroboku soils, brown forest soils and alluvial soils collected in the southern Kanto district, Japan. The effects of biological accumulation on the soil elements are evaluated with the analyses of several plant materials. Compared to the crustal abundance, the plant materials are often enriched in P, Sb, Zn, Cd, Cu, Ca, Pb, Bi, Mn, Sr, K, Mo, As and Sn, but depleted in Al, Ti, Fe,Li, Cs, Tl, Be, Co, Cr, Ni, V, Ga, La, Ce, Th, U, Y and Zr. Most of the elements enriched in plant materials are generally dominant in the uppermost soil layers, reflecting the biological accumulation process. Whereas the elements depleted in the plant materials are clearly lower in the upper soil layers than the deeper one. This may be caused by the diagenetic transportation and the diluting effects by soil water and organic materials which accumulated during soil forming process. It is assumed that the parent material of the studied Kuroboku soils originated from the atomospheric transport materials such as altered tephra, reworked crustal materials with the fine particles of aeolian dust. The brown forest soils are composed mainly of altered basement rocks, and a small amount of the atomospheric transport materials. Both clastic materials derived from basement rocks and the atomospheric transport materials are significant sources of the alluvial soils. Compared to the noncultivated soils, cultivated soils are dominant in K and P through its suppying the manures. There is a clear difference in the chemical composition of the river sediments and the soils. In some samples collected around the highly industrialized areas, recent anthropogenic pollution for heavy metals are recognized. The geochemical mapping according to analyses of the soil itself will be useful for evaluation of recent environmental pollution and estimation of background level concentration of soil elements.

Content from these authors
© 2004 National Institute of Advanced Industrial Science and Technology, Geological Survey of Japan
Next article
feedback
Top