Chem-Bio Informatics Journal
Online ISSN : 1347-0442
Print ISSN : 1347-6297
Molecular modeling study of the thymidine phosphorylase inhibitor by SBDD and classical QSAR analysis
Yukio TadaHideki KazunoTsutomu SatoNorihiko SuzukiTomohiro EmuraShingo Yano
Author information

2017 Volume 17 Pages 19-29


Trifluorothymidine (TFT) has antitumor activity, but it is easily metabolized to inert trifluorothymine by thymidine phosphorylase (TP). Accordingly, TFT alone cannot show satisfactory clinical antitumor effects. Human TP (HTP) is the main enzyme of pyrimidine nucleoside phosphorylase in human. Therefore, it has been necessary to develop a HTP inhibitor to maintain antitumor activity of TFT. Here we reveal the drug design process of HTP inhibitor based on SBDD and classical QSAR analysis. Thymine was selected as a seed compound and then 5-chlorouracil (3) was selected as a lead compound. The introduction of the imino moiety to C6 position of the lead compound (3) enhanced the inhibitory activity of TP. As a result, 5-chloro-6-[1-(2-iminopyrrolidinyl) methyl] uracil hydrochloride (TPI) was chosen as the candidate for the clinical trials. And TAS-102 (the combination of TFT and TPI in a 1:0.5 molar ratio) has been approved as Trifluridine/Tipiracil (Lonsurf) for the treatment of metastatic colorectal cancer in Japan, United States and EU.

Information related to the author
Previous article Next article