Proceedings of the Symposium on Chemoinformatics
39th Symposium on Chemoinformatics, Hamamatsu
Conference information

Oral Session
Isotope fractionation analysis based on adsorption structure for group 6 elements on minerals
*Masato TanakaDaisuke ArigaTeruhiko KashiwabaraYoshio Takahashi
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Pages O5-

Details
Abstract
Group 6 elements, chromium (Cr), molybdenum (Mo), and tungsten (W), are important trace elements for geochemistry since they are redox sensitive and have several stable isotopes. In particular, Mo has drawn attention in paleoceanography because its geochemical behavior sharply changes depending on the redox conditions (Anbar, 2004). A fractionation for Mo was observed during the adsorption to manganese oxides, i.e. δ97/95Mo = -1.8‰ (Wasylenk et al., 2011). On the other hand, Cr did not show an isotope fractionation during the adsorption to Fe-(oxyhydr)oxides (Ellis et al., 2002). Kashiwabara et al. (2011) suggested that the Mo isotope fractionation at water/metal oxides interface is caused by symmetrical change of molybdate from tetrahedral (Td) to octahedral (Oh) structure during adsorption by XAFS analysis. However, this fact was not confirmed well. In this study, we tried to understand the isotope fractionation of group 6 elements accompanying with adsorption on Fe/Mn-(oxyhydr)oxides by means of density functional theory (DFT) calculations and information of adsorption structure obtained by XAFS.
Content from these authors
Previous article Next article
feedback
Top