Drug Metabolism and Pharmacokinetics
Online ISSN : 1880-0920
Print ISSN : 1347-4367
ISSN-L : 1347-4367
Regular Article
Metabolism of N,N-Dipropyl-2-[4-Methoxy-3-(2-Phenyl-Ethoxy)-Phenyl]-Ethyl-Amine-Monohydrochloride (NE-100), A Novel Sigma Ligand: Contribution of Cytochrome P450 Forms Involved in the Formation of Individual Metabolites in Human Liver and Small Intestine
Takahito YAMAMOTONaoko HAGIMAMisako FUKASAWAJun-ichi YAMAGUCHIMasato NAKAMURAYoshiro KOHNOKiyoshi NAGATAYasushi YAMAZOE
Author information
JOURNAL FREE ACCESS

2003 Volume 18 Issue 3 Pages 173-185

Details
Abstract
In the present study, human cytochrome P450 (CYP) forms involved in producing the primary metabolites of NE-100 were identified. Major metabolites of NE-100 in human liver microsomes (HLM) were N-depropylation of NE-100 (NE-098), p-hydroxylation of phenyl group of NE-100 (NE-152), m-hydroxylation of phenyl group of NE-100 (NE-163) and O-demethylation of NE-100 (NE-125). Judging from the correlation and inhibition studies, NE-125 and NE-152+163mix formations were predominantly mediated by CYP2D6 and NE-098 formation was mediated by multiple CYP forms at a low NE-100 concentration (0.1 μM) in the HLM. According to relative activity factor (RAF) approaches, all these reactions were predominantly catalyzed by CYP2D6 at a substrate concentration assuming a plasma level of NE-100 (Km>>S) in case of the human liver. Depending on the increase in NE-100 concentrations, the rate of contribution for NE-098 and NE-152+163mix formations increased in CYP3A4, although the predominant contribution of CYP2D6 for NE-125 formation did not change. In human intestinal microsomes (HIM), NE-100 was mainly metabolized to NE-098 and NE-152+163mix by CYP3A4. The intrinsic clearance for their formations in HIM was 3.2 and 14.9 times less than those in HLM, respectively, and no formation of NE-125 was observed in HIM. These results strongly suggest that CYP2D6 is the predominant form for NE-100 metabolism in the human liver in in vivo conditions (Km>>S) and the liver plays a more important role than does the small intestine in the first pass metabolism.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2003 by The Japanese Society for the Study of Xenobiotics
Previous article Next article
feedback
Top