Drug Metabolism and Pharmacokinetics
Online ISSN : 1880-0920
Print ISSN : 1347-4367
ISSN-L : 1347-4367
Regular Articles
Establishment of MDCKII Cell Monolayer with Metabolic Activity by CYP3A4 Transduced with Recombinant Adenovirus
Makoto KATAOKAYuki TERASHIMAKatsuhiko MIZUNOYoshie MASAOKAShinji SAKUMATsuyoshi YOKOIShinji YAMASHITA
Author information
JOURNAL FREE ACCESS

2013 Volume 28 Issue 2 Pages 125-131

Details
Abstract
  This study aims to establish an in vitro system that can assess intestinal first-pass metabolism of CYP3A4 substrate drugs using adenoviral transduction. Madin-Darby canine kidney II (MDCKII) cells were used as a model of intestinal epithelial cells. Recombinant adenovirus expressing green fluorescent protein (AdGFP) and CYP3A4 (AdCYP3A4) was used as vectors. On day 2 after seeding MDCKII cells onto a semipermeable membrane, cells were infected with each adenovirus vector at various MOIs (multiplicities of infection) ranging from 0 to 200. On day 5, cell monolayers were used for drug transport study. The expression of GFP in monolayers of MDCKII cells transduced with AdGFP increased MOI-dependently and adenoviral infection showed no effect on the membrane permeability of drugs. The metabolite formation rate of midazolam, a CYP3A4 substrate, in the permeation process of a monolayer linearly increased with an increase in the MOI of AdCYP3A4. When the period that vectors and cells were located adjacent to each other was prolonged, the rate increased 2-fold compared with that calculated from a result with a monolayer obtained from a shorter period of adjacency. This study indicates that monolayers of MDCKII cells transduced with AdCYP3A4 have the potential to enable estimation of the first-pass metabolism by CYP3A4 in the intestinal absorption process.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 by The Japanese Society for the Study of Xenobiotics
Previous article Next article
feedback
Top