Environmental Health and Preventive Medicine
Online ISSN : 1347-4715
Print ISSN : 1342-078X
ISSN-L : 1342-078X
Gabapentin improves neuropathic pain in Minamata disease model rats
Masatake Fujimura
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 29 Pages 31

Details
Abstract

Background: Methylmercury (MeHg), the causative agent of Minamata disease, damages the cranial nervous system and causes specific sensory disturbances, especially hypoesthesia, in the extremities. However, recent reports demonstrate that patients with chronic Minamata disease conversely develop neuropathic pain in the lower extremities. Studies on our established Minamata disease model rats showed that MeHg-mediated neurodegeneration might induce neuropathic pain by over time through inducing rewiring with neuronal activation in the somatosensory cortex via microglial activation in the spinal dorsal horn.

Methods: In this study, the effects of gabapentin, a potentially effective treatment for neuropathic pain, was evaluated using this Minamata disease model rats. To further elucidate the mechanism of its medicinal effects, histochemical and biochemical analyses of the nervous system of Minamata disease model rats were conducted.

Results: Gabapentin treatment restored the reduction in the pain threshold caused by MeHg exposure in rats. Histochemical and biochemical analyses revealed that gabapentin showed no effect on MeHg-induced neurodegeneration in entire nervous system and microglial activation in the spinal dorsal horn. However, it was shown that gabapentin may reduce excessive synaptogenesis through its antagonist action on the alpha2-delta-1 subunit of calcium channels in the somatosensory cortex.

Conclusions: These results indicate that gabapentin may alleviated neuropathic pain in MeHg poisoning, as typified by Minamata disease, by reversibly modulation synaptic rewiring in the somatosensory cortex.

Content from these authors

This article cannot obtain the latest cited-by information.

© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top