Environmental Health and Preventive Medicine
Online ISSN : 1347-4715
Print ISSN : 1342-078X
ISSN-L : 1342-078X
Ethylene oxide exposure increases impaired glucose metabolism in the US general population: a national cross-sectional study
Yuqi ZhaoDeliang LiuXiaogao Pan Yuyong Tan
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 29 Pages 68

Details
Abstract

Background: Current experimental evidence supports that ethylene oxide (EO) exposure-related pathophysiologies may affect glucose metabolism, but few population-based studies have explored the potential links.

Methods: This study used cross-sectional data from 15560 participants in the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. EO exposure levels were calculated by testing hemoglobin adducts of EO (HbEO) via a modified Edman reaction. We focused on the association of EO exposure with prediabetes and diabetes as well as indicators of impaired glucose metabolism and further analyzed the potential pathogenic mechanisms. Statistics included logistic regression, generalized additive model fitting, penalized spline method, two-piecewise linear regression, recursive algorithm, mediation analysis, and Pearson’s analysis.

Results: EO exposure was associated with changes in glucose metabolic indicators and increased prevalence of prediabetes and diabetes, showing age-consistency and being more pronounced in obese and non-smoking populations. For each one pmol/g Hb, one SD, or two-fold SD increase in log2-HbEO, the risk of prediabetes increased by 12%, 16%, and 33%, with an increased risk of diabetes by 18%, 26%, and 61%, respectively. Dose-response curves revealed that this positive correlation was approximately linear with prediabetes and “J” shaped with diabetes. When log2-HbEO > 8.03 pmol/g Hb, the risk of diabetes would be further increased. Pearson’s correlation revealed that EO exposure was associated with reduced fasting insulin and elevated HbA1c in the prediabetic stage. While in the diabetes stage, EO exposure was correlated with elevated fasting glucose, HbA1c, and HOMA-IR, suggesting an exacerbation of diabetes progression by EO exposure. A potential mechanism that the early stages of impaired glucose metabolism may be initiated by EO-related inflammation and oxidative stress damaging pancreatic β-cells, resulting in decreased insulin secretion. These speculations were partially supported by mediation analysis and mediators’ Pearson analysis.

Conclusion: Elevated ethylene oxide exposure increases the incidence of impaired glucose metabolism in the general U.S. population and a potential intervention may be to effectively suppress inflammation and oxidative stress imbalances.

Fullsize Image
Content from these authors

This article cannot obtain the latest cited-by information.

© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top