Environmental Health and Preventive Medicine
Online ISSN : 1347-4715
Print ISSN : 1342-078X
ISSN-L : 1342-078X
Dietary exposure levels to 134Cs, 137Cs, 90Sr, and 239+240Pu in Japan after the Fukushima Daiichi Nuclear Power Plant accident: a duplicate portion study for fiscal years 2012–2014
Hiroshi Terada Ikuyo IijimaSadaaki MiyakeTomoko OtaIchiro YamaguchiHiroko KodamaHideo Sugiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2025 Volume 30 Pages 48

Details
Abstract

Background: Since the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP), concerns have arisen in Japan regarding the presence of radionuclides in food. Moreover, exposure levels to 90Sr and Pu isotopes in adults and those to 134Cs+137Cs, 90Sr, and Pu (where Cs, Sr, and Pu are cesium, strontium, and plutonium, respectively) in children have not been examined. Therefore, this study employed a duplicate portion approach to examine dietary exposure levels of radionuclides in adults and children following the FDNPP accident.

Methods: The study spanned fiscal years 2012–2014 and was conducted in 10 prefectures: Hokkaido, Iwate, Miyagi, Fukushima, Ibaraki, Saitama, Tokyo, Kanagawa, Osaka, and Kochi. The participants provided portions of their meals for two non-consecutive days and completed questionnaires on the meal items. The activity concentrations of 134Cs, 137Cs, 90Sr, and 239+240Pu, which are targets of standard limits for radionuclides in foods in Japan, were determined according to the Radioactivity Measurement Series. The daily intake was calculated based on the radionuclide activity concentrations in the duplicate portion samples, and the committed effective doses were estimated using dose coefficients for the ingestion of each radionuclide provided by the International Commission on Radiological Protection.

Results: Approximately 80 duplicate samples were obtained in each fiscal year, and 242 samples were collected. The highest summed activity concentration of 134Cs and 137Cs was 11 Bq/kg, which was recorded in Date City (child) in 2013; this level was approximately one-ninth of the standard limit for general foods (100 Bq/kg). The committed effective dose from annual ingestion of the sample described above was 74 µSv, approximately 14 times lower than the maximum permissible level of 1 mSv/y. Pu was not detected and the 90Sr activity concentrations were similar to those before the FDNPP accident.

Conclusions: For the samples examined in the present study, the 134Cs, 137Cs, 90Sr, and 239+240Pu dietary exposure levels were considerably lower than the regulatory levels and may not pose a health risk.

Content from these authors

This article cannot obtain the latest cited-by information.

© The Author(s) 2025.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top