Environmental Health and Preventive Medicine
Online ISSN : 1347-4715
Print ISSN : 1342-078X
ISSN-L : 1342-078X
Determination of reactive oxygen species in mainstream smoke from various heated tobacco products
Shoichi Nishimoto-Kusunose Yohei InabaKanae BekkiAkira Ushiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2025 Volume 30 Pages 66

Details
Abstract

Background: Although smoking rates have been declining worldwide, new types of tobacco products have been gradually spreading in recent years, especially in Japan, where heated tobacco products (HTPs) users are rapidly increasing. Oxidative stress caused by reactive oxygen species (ROS) is one of the causes of smoking-induced carcinogenesis, respiratory diseases, and cardiovascular diseases. However, information on the amount of ROS contained in mainstream smoke from HTPs is limited. In this study, we measured the amount of ROS generated from HTPs to evaluate the oxidative stress-related toxicity of HTPs.

Methods: IQOS ILUMA, glo hyper+, and Ploom X ADVANCED were used as the HTP devices. Mainstream smoke was collected from each HTP according to Health Canada Intense regime (smoke volume, 55 mL; smoke duration, 2 s). The collected ROS were reacted with 2,7′-dichlorodihydrofluorescein reagents, and the amount of ROS was calculated as H2O2 equivalent from the fluorescence intensity obtained.

Results: The ROS in the mainstream smoke from IQOS ILUMA, glo hyper+ (high-temperature mode), and Ploom X ADVANCED was found to be 48.8 ± 8.6, 86.6 ± 12.6, and 40.8 ± 5.7 nmol H2O2/stick, respectively (n = 6, mean ± standard deviation), with the highest being from glo hyper+ (high-temperature mode). The amount of ROS was significantly higher in the high-temperature mode of glo hyper+ than in the standard mode of glo hyper+. Additionally, the estimated amount of ROS from smoking 20 heated sticks per day (674–2160 nmol H2O2/day) was equivalent to 2.2–96 times the amount of daily exposure to ROS in the urban atmosphere (approximately 22–300 nmol H2O2/day).

Conclusions: We found that ROS is generated from HTPs of different devices. This study suggests that HTPs users may be exposed to much more ROS than they are exposed to in normal life.

Content from these authors

This article cannot obtain the latest cited-by information.

© The Author(s) 2025.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top